Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Mus170Spring2008MusicNeurochemA2

2,243 views

Published on

Final Project

Published in: Technology, Health & Medicine
  • Be the first to comment

Mus170Spring2008MusicNeurochemA2

  1. 1. MUSIC OF THE SPHERES: Music and Neurochemistry By Jeanne Keuma In Partial Fulfillment of the Requirements for MUS 170, Dr. Arthur Harvey, Spring 2008
  2. 2. The Brain-Music Connection <ul><li>We’ve read much on the effects of music on the body, so we understand that it affects the brain. </li></ul><ul><li>We know, as Jane E. Allen reported in the article “Music May Help Neurological Therapy,” that music can repair neurological and even psychological functions and can encourage brain growth. </li></ul>
  3. 3. The Brain-Music Connection <ul><li>Right now, if you have the volume up, the music (as well as the blue background) can help stimulate your brain to calm you. </li></ul><ul><li>There’s no question about the existence of the brain-music connection. </li></ul><ul><li>But how and why does music work in the brain? </li></ul>
  4. 4. The Brain on Music <ul><li>There is still so much to discover about the brain itself. </li></ul><ul><li>“Music medicine” has only begun to receive serious scientific consideration, with rigorous medical research beginning to build up in the late 1980s. </li></ul><ul><ul><ul><li>“Music Neuroscience, Physiology and Medicine.” Fall 1997. Musica (IV)2. Available online at http://www.musica.uci.edu/mrn/V4I2F97.html#neuroscience </li></ul></ul></ul>
  5. 5. The Brain on Music <ul><li>J. Warren (of the National Hospital for Neurology and Neurosurgery, Queen Square, London) </li></ul><ul><ul><li>Acknowledges that human knowledge of the brain is relatively limited. </li></ul></ul><ul><ul><li>We now know that music is a “whole brain” phenomenon, affecting more than one or a few areas. </li></ul></ul><ul><ul><li>Warren: “Music engages a distributed set of cortical modules that process different perceptual, cognitive and emotional components with varying selectivity.” </li></ul></ul><ul><ul><li>We understand some of HOW it works. </li></ul></ul><ul><ul><li>The more important question is WHY. </li></ul></ul><ul><ul><ul><li>Warren, J. February 2008. “How Does the Brain Process Music?” Clinical Medicine 8(1):32-6. </li></ul></ul></ul>
  6. 6. The Brain in Brief <ul><li>Major Parts Relevant to this Discussion </li></ul><ul><li>Left & Right hemispheres (halves) of the brain (seen in bottom picture) </li></ul><ul><li>Frontal lobe </li></ul><ul><ul><li>Concentration </li></ul></ul><ul><ul><li>Personality and emotional traits </li></ul></ul><ul><ul><li>Motor (Brodman’s) Cortex </li></ul></ul><ul><ul><ul><li>Dancing </li></ul></ul></ul><ul><ul><li>Premotor Cortex stores motor patterns, voluntary activities </li></ul></ul>The Brain on Music Click link (or copy and paste in Internet browser window) to see Stanford researchers’ images of brain activity while the brain is receiving music: http:// www.youtube.com/watch?v =e0tQY4_UUew&feature=related
  7. 7. The Brain in Brief <ul><li>Temporal Lobe </li></ul><ul><ul><li>Auditory processing (hearing) </li></ul></ul><ul><ul><li>Perception of rhythmic patterns </li></ul></ul><ul><ul><li>Retention of rhythmic patterns </li></ul></ul><ul><ul><li>Emotional response and behavior </li></ul></ul><ul><ul><li>Memory (some aspects) </li></ul></ul><ul><ul><li>Speech </li></ul></ul><ul><ul><li>Phonological recognition (pitch, duration, stress, linguistic perception and understanding of words made of different sounds) </li></ul></ul>
  8. 8. The Brain in Brief: Cortices <ul><li>Neocortex (“new brain”) </li></ul><ul><ul><li>Top layer of the hemispheres </li></ul></ul><ul><ul><li>76% of brain volume </li></ul></ul><ul><ul><li>6-layered </li></ul></ul><ul><ul><li>Gray matter (which surrounds cerebrum’s white matter) </li></ul></ul><ul><ul><li>Many folds (increase surface area) </li></ul></ul><ul><ul><li>Part of cerebral cortex (with archicortex & paleocortex) </li></ul></ul><ul><ul><li>Higher functions </li></ul></ul><ul><ul><ul><li>Sensory perception </li></ul></ul></ul><ul><ul><ul><li>Motor commands </li></ul></ul></ul><ul><ul><ul><li>Spatial reasoning </li></ul></ul></ul><ul><ul><ul><li>Conscious thought </li></ul></ul></ul><ul><ul><ul><li>Language </li></ul></ul></ul><ul><ul><li>Imaging studies </li></ul></ul><ul><ul><ul><li>Increased blood flow through the cortex during speaking, listening, and singing </li></ul></ul></ul><ul><ul><ul><li>May be that exchanges between association cortices in the newer brain and the older parts of the forebrain, which comprise the deep-lying limbic lobe, generate memories evoked by listening to music, and arouse the emotional states that have become associated with now familiar songs through previous experiences. </li></ul></ul></ul>
  9. 9. The Brain in Brief: Cortices <ul><li>Motor Cortex </li></ul><ul><ul><li>Involved in movement, such as dance </li></ul></ul><ul><li>Sensory Cortex </li></ul><ul><ul><li>Receives signals from the senses </li></ul></ul><ul><ul><li>Includes the auditory cortex </li></ul></ul>
  10. 10. The Brain in Brief <ul><li>Auditory Cortex </li></ul><ul><ul><li>Inner ear receives vibrations and resonates ranges of frequencies into excitatory signals through sensory neurons and into the primary auditory cortex. </li></ul></ul><ul><ul><li>Researchers still figuring out what happens there. </li></ul></ul><ul><ul><ul><li>Information received from the ear is processed by neighboring cortical areas for speech and song. </li></ul></ul></ul><ul><ul><li>How the brain learns and remembers musical material and concepts </li></ul></ul><ul><ul><ul><li>Animal studies show “that learning about a tone actually ‘retunes’ brain cells of the auditory cortex (the highest level of the auditory system) so that thereafter they respond better to the most important tones. </li></ul></ul></ul><ul><ul><ul><li>Thus, the learned significance of musical sounds appears to be stored in the cortex by the amount of cortical response to each sound.” (N.M. Weinberger, 1997) </li></ul></ul></ul>
  11. 11. Cortices, Forebrain, Limbic Lobe on Music <ul><ul><li>Imaging Studies of the brain on music </li></ul></ul><ul><ul><ul><ul><ul><li>In Freeman, 1997 </li></ul></ul></ul></ul></ul><ul><ul><ul><li>During singing, speaking, and listening </li></ul></ul></ul><ul><ul><ul><ul><li>Increased blood flow through the cortex </li></ul></ul></ul></ul><ul><ul><ul><li>Possibly exchanges between association cortices in the newer brain (neo cortex) and the older parts of the forebrain--which both comprise the deep-lying limbic lobe--result in the following: </li></ul></ul></ul><ul><ul><ul><ul><li>Generate memories that are evoked when listening to music </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Arouse the emotional states that have become associated with now familiar songs through previous experiences. </li></ul></ul></ul></ul>
  12. 12. The Brain in Brief (Clockwise from Left) <ul><li>Basal Ganglia </li></ul><ul><li>Prefrontal Cortex </li></ul><ul><li>Corpus Callosum </li></ul><ul><ul><li>Connects left and right hemispheres </li></ul></ul><ul><li>Thalamus </li></ul><ul><li>Cerebellum </li></ul><ul><li>Medulla </li></ul><ul><li>Brain stem (spinal cord) </li></ul><ul><li>Pituitary </li></ul><ul><ul><li>Anterior </li></ul></ul><ul><ul><li>Posterior </li></ul></ul><ul><ul><li>They secrete different chemicals </li></ul></ul><ul><li>Hippocampus </li></ul><ul><li>Hypothalamus </li></ul>
  13. 13. Music in the Body & Brain <ul><li>Music involves somatosensory systems and motor systems, connecting them </li></ul><ul><ul><li>Indicates associations between music, dance, rhythmic moving, and chanting </li></ul></ul><ul><li>Singing and dancing involve: </li></ul><ul><ul><li>Motor cortex </li></ul></ul><ul><ul><li>Basal ganglia </li></ul></ul><ul><ul><li>Cerebellum </li></ul></ul><ul><li>Activities in these structures </li></ul><ul><ul><li>Seen in the initiation of and “rhythmic spatiotemporal patterns of neural activity in widely distributed areas of the brain.” </li></ul></ul><ul><ul><li>Neuronal activities’ point of origin is unknown </li></ul></ul><ul><ul><li>How patterns begin (neurologically) is also unknown </li></ul></ul>
  14. 14. Music in the Body & Brain <ul><li>So what is known? </li></ul><ul><ul><li>Neurophysiological information explains physical constraints in producing and apprehending music. </li></ul></ul><ul><ul><li>Constraints include </li></ul></ul><ul><ul><ul><li>Range of auditory frequencies in human voice and instruments </li></ul></ul></ul><ul><ul><ul><li>Rates and duration of repetitive movements when creating music and when dancing </li></ul></ul></ul><ul><ul><ul><li>Limitations that are results of body parts’ inertia. </li></ul></ul></ul>
  15. 15. Music: Learned in Cortical Lobes <ul><li>Study by Eckhart Altenmüeller et al. </li></ul><ul><ul><ul><ul><li>Altenmüller, E., Gruhn, W., Parlitz, D. and Kahrs, J. 1997. Music learning produces changes in brain activation patterns: a longitudinal DC-EEG study. Int. J. Music Medicine. </li></ul></ul></ul></ul><ul><li>Experiment’s Groups Learned Same Musical Phenomenon Via Different “Memory Systems” </li></ul><ul><ul><li>One group learned by “declarative” memory (learning about something via verbal skills, recalling verbally), including visual aids and music samples </li></ul></ul><ul><ul><li>On group learned by “procedural” memory (learning by doing), taught how and what to do with a music technique. Taught via musical methods only: clapping, moving, singing, improvising. </li></ul></ul><ul><ul><li>Control group learned nothing; served to observe passage of time </li></ul></ul><ul><li>Cerebral cortex’s electrical activity was measured in each subject </li></ul><ul><li>The two experimental groups showed different patterns of brain activation. </li></ul><ul><li>The brain hemispheres and their relevant lobes (&quot;frontal&quot;, &quot;temporal&quot; and &quot;parietal&quot;) showed different amounts of activity between the groups </li></ul>
  16. 16. Music: Learned in Cortical Lobes <ul><ul><li>HOW the brain learns information (depending on WHICH memory system is used during learning) determines how it records the information. </li></ul></ul><ul><ul><ul><li>When using different memory systems to learn one thing, the brain records the new information according to the memory system used, the instructional strategy used. </li></ul></ul></ul><ul><ul><li>Procedural group </li></ul></ul><ul><ul><ul><li>More parts of the cerebral cortex were involved in learning than for the declarative group. </li></ul></ul></ul><ul><ul><ul><li>Better retention 1 year later </li></ul></ul></ul><ul><ul><li>It’s not conclusive, but perhaps the procedural “active-learning” group developed better memory because the learning involved more parts of the cerebral cortex. </li></ul></ul><ul><ul><li>Compared to declarative/passive learning of music, active learning of music seems more efficient in developing a more hardy long-term memory. </li></ul></ul>
  17. 17. Music: Learned in Hemispheres <ul><ul><li>Altenmüeller et al. studied whether the left hemisphere is more dominant than the right when it processes melody. (In Weinberger, 1997, “Neurobiology”). </li></ul></ul><ul><ul><ul><li>Differences were between the learning groups and the control (untrained) group </li></ul></ul></ul><ul><ul><ul><li>More left hemispheric activation in the learning groups </li></ul></ul></ul><ul><ul><ul><li>Implies that analytic instruction about musical ideas tends to activate the left hemisphere via learning </li></ul></ul></ul><ul><ul><ul><li>Implies that the way the brain processes the particular musical concepts taught in this study is learned and not innate (not inborn) </li></ul></ul></ul><ul><ul><li>This research reinforces known pedagogy: music curriculum and learning is more effective when involving direct and active learning </li></ul></ul>
  18. 18. <ul><li>Limbic System in the Brain </li></ul><ul><ul><li>Hippocampus </li></ul></ul><ul><ul><li>Thalamus </li></ul></ul><ul><ul><ul><li>A key organ </li></ul></ul></ul><ul><ul><ul><li>Gateway into the rest of the higher brain </li></ul></ul></ul><ul><ul><ul><li>Signals pass through it to get to higher brain </li></ul></ul></ul><ul><ul><ul><li>Helps to regulate brain functions </li></ul></ul></ul><ul><ul><ul><li>Emits constant 30-Hz pulse (an E-flat) (Barnhill, 2008) </li></ul></ul></ul><ul><ul><ul><li>Dysfunction in rhythm can produce Tourrette’s syndrome </li></ul></ul></ul>The Brain in Brief: Limbic System
  19. 19. The Brain in Brief: Limbic System <ul><li>Amygdala </li></ul><ul><ul><li>Emotions are first perceived here </li></ul></ul><ul><ul><li>Pathways </li></ul></ul><ul><ul><li>Sends electrical or neurochemical signals to rest of the body, which responds </li></ul></ul><ul><ul><ul><li>Link to visual of this: </li></ul></ul></ul><ul><ul><ul><li>http:// www.youtube.com/watch?v =K9BErDQF3CU&feature=related </li></ul></ul></ul><ul><ul><li>The Life Soundtrack Study by neuroscientist Dr. Daniel J. Levitin </li></ul></ul><ul><ul><ul><li>Amygdala & nucleus circumbens: sex, drugs, and rock ‘n roll </li></ul></ul></ul><ul><ul><ul><li>http:// www.youtube.com/watch?v =0CpKPBYXhsM </li></ul></ul></ul><ul><ul><ul><li>(2 minutes) </li></ul></ul></ul>
  20. 20. <ul><li>Limbic System in the Brain </li></ul><ul><ul><li>Limbic Lobes </li></ul></ul><ul><ul><ul><li>Emotions </li></ul></ul></ul><ul><ul><ul><li>Sex </li></ul></ul></ul><ul><ul><ul><li>Rage </li></ul></ul></ul><ul><ul><ul><li>Fear </li></ul></ul></ul><ul><ul><ul><li>New recent memories are integrated </li></ul></ul></ul><ul><ul><ul><li>Biological rhythms are set </li></ul></ul></ul>The Brain in Brief
  21. 21. Music In the Limbic System <ul><li>This just in (May 2008): Green et al. found music in minor keys activates the limbic system </li></ul><ul><ul><li>Analyzed brain images of subjects exposed to major and minor music to study neural basis of perception of musical mode </li></ul></ul><ul><ul><li>Minor mode melodies </li></ul></ul><ul><ul><ul><li>Deemed “sadder” </li></ul></ul></ul><ul><ul><ul><li>Increased activity in parahippocampal gyrus, bilateral ventral anterior cingulate, and in left medial prefrontal cortex </li></ul></ul></ul>
  22. 22. Music, Brainstem, Neocortex <ul><li>A 2007 study found new information on music’s effects on the brainstem and neocortex </li></ul><ul><ul><li>Nina Kraus, director of Northwestern University's Auditory Neuroscience Laboratory </li></ul></ul><ul><ul><li>Patrick Wong, primary author of Musical Experience Shapes Human Brainstem Encoding of Linguistic Pitch Patterns </li></ul></ul><ul><li>First study showing scientific and physical evidence that playing a musical instrument significantly increases brainstem's sensitivity to speech sounds </li></ul><ul><ul><li>Musical training positively affects how one “encodes sound even at a level as basic as the brainstem” (Wong, 2007) </li></ul></ul><ul><ul><li>Musical training enhances “sound environment” (Wong) </li></ul></ul><ul><ul><li>Found that brainstem and neocortex’s relationship can be redefined </li></ul></ul><ul><ul><ul><li>Brainstem: lower structure thought to be “old brain,” unchangeable, and uninvolved in complex processing </li></ul></ul></ul><ul><ul><ul><li>Neocortex: higher structure: music, language, other complex processing </li></ul></ul></ul><ul><ul><ul><li>In children with learning disabilities, brainstem can’t efficiently process sound </li></ul></ul></ul><ul><ul><ul><li>But musical training improves the brainstem’s sound processing </li></ul></ul></ul><ul><ul><ul><li>Music isn’t only for the neocortex. It can “retune” the brainstem too. </li></ul></ul></ul><ul><ul><ul><li>Also “tells us that our basic sensory circuitry is more malleable than we previously thought ” (Kraus) </li></ul></ul></ul>
  23. 23. Real Experience of Brain Disorder <ul><li>Stroke…of Genius </li></ul><ul><ul><li>Optional information on first-hand experience of a stroke, presented by neuroanatomist, brain researcher, and professor Jill Bolte Taylor, presented at the Technology, Entertainment, and Design conference (which is by invite only and costs $5000, but which TED provides to the world through videos posted on the Web!!!) </li></ul></ul><ul><ul><li>She also shows a real human brain and brilliantly explains the two different brain hemispheres </li></ul></ul><ul><ul><li>Click below for this amazing video (about 15 minutes): </li></ul></ul><ul><ul><li>http://www.ted.com/talks/view/id/229 </li></ul></ul>
  24. 24. Brain Cells <ul><li>Neurons = brain cells = “nerves” </li></ul><ul><li>Anatomy of a nerve </li></ul><ul><ul><li>Click on the link below to see a video </li></ul></ul><ul><ul><ul><li>http://www.youtube.com/watch?v=i-NgGKSNiNw&feature=related </li></ul></ul></ul>
  25. 25. Everything Is A Drug <ul><li>A drug is any substance that affects the body </li></ul><ul><li>Everything we put into our body is a drug: food, other chemicals, and now, MUSIC! </li></ul><ul><li>Most drugs don’t easily pass the “blood brain barrier” (BBB) to the brain </li></ul><ul><li>But music can go directly into the brain, irrespective of the BBB </li></ul><ul><li>Music may seem intangible, but we know it exists in the physical world as vibration </li></ul><ul><li>Vibrations reach the ear, which translate sound into chemical signals into the brain </li></ul><ul><li>Like all drugs, music also results in a biochemical reaction acting in neurons and other cells </li></ul>
  26. 26. Neurochemicals: Types <ul><li>Neurotransmitters </li></ul><ul><ul><li>Biochemicals released from neurons </li></ul></ul><ul><li>Hormones </li></ul><ul><ul><li>Biochemicals released from glands/organs (within endocrine system) </li></ul></ul><ul><li>Dual-Role Types of Neurochemicals </li></ul><ul><ul><li>Adrenaline: From adrenal gland to target organs (such as heart). OR from presynaptic nerve cell to another (postsynaptic) cell </li></ul></ul><ul><li>Chemicals are signals </li></ul><ul><ul><li>Chemical signals with chemical reactions that have effects </li></ul></ul><ul><ul><li>Electrical signals (electrochemical signals which carry positive or negative charges to polarize or depolarize) </li></ul></ul>
  27. 27. Neurotransmitters <ul><li>Acetylcholine (Ach) </li></ul><ul><ul><li>Stimulates muscles </li></ul></ul><ul><ul><ul><li>Voluntary muscles: the ones we control </li></ul></ul></ul><ul><ul><ul><li>Involuntary “smooth” muscles: those working without our direct control, such as our digestive system muscles our heart </li></ul></ul></ul><ul><ul><li>Sensory neurons (nerves) </li></ul></ul><ul><ul><li>Triggers autonomic “sympathetic” nervous system </li></ul></ul><ul><ul><ul><li>Works “automatically” in response to stimuli such as chemicals </li></ul></ul></ul><ul><ul><ul><ul><li>Example: increase/decrease heart rand respiration rates </li></ul></ul></ul></ul><ul><ul><li>Sleep functions: schedules dreaming </li></ul></ul><ul><ul><li>Blocking acetylcholine (such as through poisons or bacteria) causes muscle paralysis. </li></ul></ul><ul><ul><li>90% loss of acetylcholine is found in patients with Alzheimer’s Disease </li></ul></ul>
  28. 28. Neurotransmitters <ul><li>Epinephrine (also called adrenaline) </li></ul><ul><ul><li>Secreted from adrenal glands into blood </li></ul></ul><ul><ul><li>Stress hormone: Kicks in the autonomic nervous system to increase heart rate, blood pressure, respiratory rate </li></ul></ul><ul><li>Melatonin </li></ul><ul><ul><li>Secreted by the pineal gland </li></ul></ul><ul><ul><li>Regulates mood </li></ul></ul><ul><ul><li>Regulates sexual development </li></ul></ul><ul><ul><li>Regulates circadian rhythm (daily cycles responding to light in the environment) </li></ul></ul>
  29. 29. Neurotransmitters <ul><li>Norepinephrine (noradrenaline) </li></ul><ul><ul><li>Secreted from adrenal glands into blood </li></ul></ul><ul><ul><li>Affects sympathetic nervous system </li></ul></ul><ul><ul><ul><li>Brings system into “high alert” </li></ul></ul></ul><ul><ul><ul><li>Increases heart rate, respiration rate, blood pressure </li></ul></ul></ul><ul><ul><li>Helps to form memories </li></ul></ul><ul><ul><li>Associated with pleasure or treatment of depression </li></ul></ul>
  30. 30. Neurotransmitters <ul><li>Dopamine </li></ul><ul><ul><li>Inhibitory neurotransmitter: blocks a neuron’s ability to “fire” electrochemical signals </li></ul></ul><ul><ul><li>Increased by certain drugs (cocaine, alcohol, nicotine, heroin) </li></ul></ul><ul><ul><li>Brings about feelings of euphoria </li></ul></ul><ul><ul><li>Schizophrenia: excess dopamine in frontal lobes </li></ul></ul><ul><ul><ul><li>Drugs that block dopamine help to treat schizohprenia </li></ul></ul></ul><ul><ul><li>Parkinson’s Disease: insufficient dopamine in motor areas </li></ul></ul><ul><ul><li>Social anxiety </li></ul></ul><ul><ul><ul><li>Low dopamine levels in the brain </li></ul></ul></ul><ul><ul><ul><li>Unsociability in schizophrenics </li></ul></ul></ul>See the link below for an audiovisual experience of Debussy’s “Claire de Lune.” Do the visuals (by Stephen Malinowski) calm or distract you? If you close your eyes, are you more calm than if you watch the video? http:// www.youtube.com/watch?v =LlvUepMa31o&feature=related
  31. 31. Neurotransmitters <ul><li>Levodopa (L-dopa) </li></ul><ul><ul><li>Chemical precursor to dopamine </li></ul></ul><ul><ul><li>Alleviates Parkinson’s symptoms </li></ul></ul><ul><ul><ul><li>The well-known story of Dr. Oliver Sacks’ discovery of L-dopa to treat catatonia in patients who had been victim to the Encephalitis Lethargica epidemic. His story was shown in the movie “Awakenings” in which Robin Williams played Dr. Sacks and which was based on Dr. Sacks’ book. </li></ul></ul></ul><ul><ul><ul><li>L-dopa is now used to help those with Parkinson’s disease. </li></ul></ul></ul><ul><ul><ul><li>http://www.youtube.com/watch?v=OvV4zU59ujo&feature=related </li></ul></ul></ul><ul><ul><ul><li>(about 8 minutes) </li></ul></ul></ul>
  32. 32. Neurotransmitters <ul><li>Serotonin </li></ul><ul><ul><li>A derivative of tryptophan (which is found in milk, which may increase serotonin and enable sleep) </li></ul></ul><ul><ul><li>An inhibitory neurotransmitter; an amine </li></ul></ul><ul><ul><ul><li>When cells perceive that “extra” serotonin molecules floating in the synaptic area, they “reuptake” the serotonin molecules into storage areas </li></ul></ul></ul><ul><ul><ul><li>When it is present/bonded to a cell part, it stops transmission of other chemicals </li></ul></ul></ul><ul><ul><ul><li>Blocking serotonin from binding to nerve cells can result in hallucinations (as with LSD & ecstasy), evidence of role in perception </li></ul></ul></ul><ul><ul><li>Mediates mood & emotion </li></ul></ul><ul><ul><ul><li>Associated with pleasure </li></ul></ul></ul><ul><ul><ul><li>Increasing it alleviates depression </li></ul></ul></ul><ul><ul><li>Mediates perception </li></ul></ul>
  33. 33. Neurotransmitters <ul><li>Serotonin (continued) </li></ul><ul><ul><li>Insufficient levels </li></ul></ul><ul><ul><ul><li>Depression </li></ul></ul></ul><ul><ul><ul><li>Suicide </li></ul></ul></ul><ul><ul><ul><li>Anger control problems </li></ul></ul></ul><ul><ul><ul><li>Obsessive-Compulsive Disorder </li></ul></ul></ul><ul><ul><ul><li>Emotional Disorders </li></ul></ul></ul><ul><ul><ul><li>Increased cravings for carbohydrates </li></ul></ul></ul><ul><ul><ul><li>Sleep dysfunction </li></ul></ul></ul><ul><ul><ul><li>Migraines </li></ul></ul></ul><ul><ul><ul><li>Fibromyalgia </li></ul></ul></ul><ul><ul><ul><li>Irritable Bowel Syndrome </li></ul></ul></ul><ul><ul><li>Drugs that are selective serotonin-reuptake inhibitors (SSRIs) </li></ul></ul><ul><ul><ul><li>Treat these maladies </li></ul></ul></ul><ul><ul><ul><li>Prevent reuptake mechanism from putting serotonin back into storage </li></ul></ul></ul><ul><ul><ul><li>Milk (again, tryptophan in milk may increase serotonin, which may explain why milk is thought to induce sleep) </li></ul></ul></ul>
  34. 34. Neurotransmitters <ul><li>Serotonin </li></ul><ul><ul><li>Excessive levels </li></ul></ul><ul><ul><ul><li>Serotonin Syndrome </li></ul></ul></ul><ul><ul><ul><ul><li>Results from drug interactions, intentional or unintentional drug use, drug reaction </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Preventable </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Minor to lethal results </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Hyperactive autonomic nervous system </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Tremor </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Diarrhea </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Delirium, anxiety </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Neuromuscular rigidity </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Hyperthermia </li></ul></ul></ul></ul>
  35. 35. Neurochemicals <ul><li>Endogenous Morphine (Endorphin) </li></ul><ul><ul><li>The body’s natural morphine/heroin </li></ul></ul><ul><ul><li>Inhibitory role </li></ul></ul><ul><ul><ul><li>Reduces pain </li></ul></ul></ul><ul><ul><ul><ul><li>The “runner’s high” after passing the painful “wall” </li></ul></ul></ul></ul><ul><ul><ul><li>Increases pleasure: “the feel-good chemical” </li></ul></ul></ul><ul><ul><ul><li>Reduces heart rate, respiration rate, metabolism </li></ul></ul></ul>
  36. 36. Neurotransmitters <ul><li>Gamma-Aminobutyric Acid (GABA) </li></ul><ul><ul><li>A “brake” on the neurotransmitters that are associated with anxiety </li></ul></ul><ul><ul><li>Calming effect (acts as a “downer”) </li></ul></ul><ul><ul><ul><li>Sedative, hypnotic, anti-convulsant, muscle relaxant </li></ul></ul></ul><ul><ul><ul><li>Can affect sleep </li></ul></ul></ul><ul><ul><ul><ul><li>Suppresses REM (rapid-eye movement phases; dreaming phases) sleep </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Lack of REM sleep leads to psychosis </li></ul></ul></ul></ul><ul><ul><ul><li>Triggered by barbituates, alcohol </li></ul></ul></ul><ul><ul><ul><li>Increasing it in depressed patients can improve mood </li></ul></ul></ul><ul><ul><li>Insufficient GABA: anxiety disorders </li></ul></ul><ul><ul><li>Insufficient GABA in some parts: epilepsy </li></ul></ul>
  37. 37. Neurotransmitters <ul><li>Glutamate </li></ul><ul><ul><li>Related to GABA: an excitatory relative </li></ul></ul><ul><ul><li>Most common neurotransmitter in the brain: up to about 50% of neurons </li></ul></ul><ul><ul><li>Important to memory function </li></ul></ul><ul><ul><li>Excessive amounts are TOXIC to neurons (kills them) </li></ul></ul><ul><ul><ul><li>Stroke can lead to excess glutamate molecules, killing more neurons than the stroke itself did </li></ul></ul></ul><ul><ul><ul><li>Lou Gehrig’s disease (ALS, or amyotrophic lateral sclerosis) </li></ul></ul></ul><ul><ul><ul><li>Possible suspect in other nervous system diseases </li></ul></ul></ul><ul><ul><ul><li>Watch out for those MSG headaches! (Monosodium GLUTAMATE is often used to enhance food flavors.) </li></ul></ul></ul>
  38. 38. How Neurotransmitters Work <ul><li>On a molecular and atomic level, biochemistry is extremely complicated. </li></ul><ul><li>But here’s one example: How GABA works </li></ul><ul><ul><li>Inhibitory neurotransmitter, couples to chloride “channels” in nerves </li></ul></ul><ul><ul><li>Binds to a channel, opens channel, allows chloride to enter cell </li></ul></ul><ul><ul><ul><li>Minute amount of chloride is a necessary chemical in the body. </li></ul></ul></ul><ul><ul><li>Chloride has a negative charge (more electrons than protons) </li></ul></ul><ul><ul><li>Negative charges make neuron LESS likely to fire off a signal </li></ul></ul><ul><ul><li>Inrush of negative ions suppresses neurons, turning down brain activity </li></ul></ul><ul><ul><li>GABA action is triggered by barbituates and benzos </li></ul></ul><ul><ul><li>Acts as a “downer” </li></ul></ul><ul><ul><ul><li>Sedative, hypnotic, anti-convulsant, muscle relaxant </li></ul></ul></ul><ul><ul><ul><li>Can affect sleep, suppressing REM (rapid-eye movement phases; dreaming phases) sleep </li></ul></ul></ul>
  39. 39. Neuropeptides & Music <ul><li>Freeman (2007): “[E]ach state of emotion is mediated by a neurohormone acting on the hypothalamus as well as other parts of the brain.” But Freeman finds this only partially satisfying as an explanation. </li></ul><ul><li>He cites the classical Greek categories of music: </li></ul><ul><ul><li>Phrygian </li></ul></ul><ul><ul><li>Lydian </li></ul></ul><ul><ul><li>Ionian </li></ul></ul>
  40. 40. Neuropeptides & Music <ul><li>Phrygian </li></ul><ul><ul><li>Martial. Incites action in battle. </li></ul></ul><ul><ul><li>Fear and rage: “associated with the intracerebral release of norepinephrine” </li></ul></ul><ul><ul><ul><li>Behaviors reflecting aggression and terror today caused by cocaine and amphetamine. These mimic norepinephrine. </li></ul></ul></ul><ul><li>Lydian </li></ul><ul><ul><li>Solemn, slow, plaintive, religious. </li></ul></ul><ul><ul><li>Flutes instead of trumpets. </li></ul></ul><ul><ul><li>Moods of contemplation and relaxation result through release of serotonin </li></ul></ul><ul><ul><ul><li>Today, similar effects caused by mushroom hallucinogens, LSD </li></ul></ul></ul><ul><ul><ul><li>Effects not seen with Prozac, which blocks endogenous serotonin re-uptake and prolongs its action. </li></ul></ul></ul><ul><li>Ionian </li></ul><ul><ul><li>Convivial, joyful, effeminate (per Plato); drums induce dancing. </li></ul></ul><ul><ul><li>Pleasure correlates with release of dopamine and the endorphins </li></ul></ul><ul><ul><ul><li>Effects also seen with using alcohol and tetrahydrocannibol (“adjuvants to facilitate the passive onset of such states at modern rock concerts and rave dances” [Freeman, 2007] </li></ul></ul></ul>
  41. 41. Stress Chemicals & Responses <ul><li>Antidiuretic hormone (ADH, or vasopressin) </li></ul><ul><ul><li>Stimulates smooth muscle tissue in blood vessels to constrict </li></ul></ul><ul><li>Adrenocorticotropic Hormone (ACTH) </li></ul><ul><ul><li>During stress, the hypothalamus triggers the anterior pituitary gland to release ACTH </li></ul></ul><ul><ul><li>ACTH travels to adrenal glands </li></ul></ul><ul><ul><li>Adrenal glands release epinephrine/adrenaline and cortisol/hydrocortisone into bloodstream </li></ul></ul>
  42. 42. Stress Chemicals & Responses <ul><li>Epinephrine/adrenaline and/hydrocortisone/cortisol act on the rest of the body </li></ul><ul><ul><li>“ Fight or flight” response </li></ul></ul><ul><ul><li>Release stored energy (glucagon, glucose) </li></ul></ul><ul><ul><li>Increase blood flow to muscles </li></ul></ul><ul><ul><li>Increases heart rate, respiratory rate, and blood pressure </li></ul></ul><ul><ul><li>Suppresses the immune system </li></ul></ul><ul><ul><li>Epinephrine/Adrenalin triggers norepinephrine/noradrenaline, which activates the amygdala in the brain </li></ul></ul><ul><ul><ul><li>The amygdala strengthens memory stored during this heightened experience. Amygdala and other parts store this memory. </li></ul></ul></ul><ul><ul><ul><li>Emotions strengthen memory. More emotional, important, or traumatic memories are more easily recalled. </li></ul></ul></ul><ul><ul><li>What do you feel when listening to this more stressful music? Is it more difficult to concentrate? Do you feel pleasure or displeasure? </li></ul></ul>
  43. 43. UPBEAT Music “Ups” Cortisol <ul><li>Upbeat music needn’t necessarily be stressful </li></ul><ul><li>Sometimes we employ faster music to invigorate us to keep exercising or to stay awake while studying </li></ul><ul><li>Click on music A, then on the next slide, B. </li></ul>A
  44. 44. UPBEAT Music “Ups” Cortisol <ul><li>Click on music option B. </li></ul><ul><li>You may like neither, but…If you had no other choice, would you prefer A or B or the other when exercising? When studying? When driving? (Of course, in the end, preference is personal when selecting specific music, and it’s important that the music be preferred.) </li></ul>B
  45. 45. UPBEAT Music “Ups” Cortisol <ul><li>… Or music you intensely dislike will also trigger cortisol and your stress responses. </li></ul>
  46. 46. Favorite Music Lowers Cortisol <ul><li>Dr. J. Escher et al. </li></ul><ul><ul><ul><ul><li>Escher, J., Hohmann, U., Anthenien, L., Dayer, E., Bosshard, C. and Gaillard, R.C. (1993). [“Music during gastroscopy”] {German]. Schweiz. Med. Wochenschrift , 123, 1354-1358. </li></ul></ul></ul></ul><ul><li>Experimented with music to lower cortisol during surgery </li></ul><ul><ul><li>One group selected music they preferred from list provided by a music therapist </li></ul></ul><ul><ul><ul><li>Significantly lower levels of cortisol </li></ul></ul></ul><ul><ul><li>Control group received no music </li></ul></ul><ul><ul><ul><li>No reduced levels of cortisol </li></ul></ul></ul><ul><ul><ul><li>Increased cortisol levels during surgery </li></ul></ul></ul>
  47. 47. What are your favorite relaxing songs? How does this one make you feel? (Click to start.) For me, it triggers many happy childhood memories, so it’s recorded in my brain with happiness and happy chemicals. (Click elsewhere on screen to stop music & advance slide.)
  48. 48. What about this one? How does this one make you feel? (Click to start.) Worldwide, this song has become a favorite in movies and commercials, often associated with childhood, toys, and happy situations. (Click elsewhere on screen to stop music & advance slide.)
  49. 49. Music Shortens Time for Excess Cortisol Levels in Blood <ul><li>B. Miluk-Kolasa et al. </li></ul><ul><ul><ul><ul><li>Miluk-Kolasa, B., Obminski, S., Stupnicki, R. and Golec, L. (1994). Effects of music treatment on salivary cortisol in patients exposed to pre-surgical stress. Exper. and Clin. Endocrinol., 102, 118-120. Asdf </li></ul></ul></ul></ul><ul><li>Studied music’s effects on patients who were were informed that they would need surgery </li></ul><ul><ul><li>One group received 1 hour of music therapy right after the bad news </li></ul></ul><ul><ul><li>One group didn’t receive any music </li></ul></ul><ul><li>Results: Music decreases the extent of the stress-response, so cortisol levels don’t remain high as long as they would without music </li></ul><ul><ul><li>In all groups, cortisol levels increased 50% within 15 minutes after the news </li></ul></ul><ul><ul><li>1 hour after the news, the group without music continued to show increased cortisol levels </li></ul></ul><ul><ul><li>1 hour after the news, the groups with music had returned to pre-news cortisol levels </li></ul></ul>
  50. 50. Ravi Shankar’s Music Lowers Cortisol and Noradrenaline <ul><li>Möckel et al. </li></ul><ul><ul><ul><ul><li>Möckel, M., Röcker, L., Störk, T., Vollert, J., Danne, O., Eichstädt, H., Müller, R. and Hochrein, H. (1994). Immediate physiological responses of healthy volunteers to different types of music: cardiovascular, hormonal and mental changes. European Journal of Applied Physiology ( 68), 451-459. </li></ul></ul></ul></ul><ul><ul><li>Studied what types of music have what effects in healthy people </li></ul></ul><ul><ul><li>Three types of music </li></ul></ul><ul><ul><ul><li>Johann Strauss, waltz. Employs a regular rhythm. </li></ul></ul></ul><ul><ul><ul><li>Contemporary composer W. H. Henze was used. Employs highly irregular rhythm. </li></ul></ul></ul><ul><ul><ul><li>Ravi Shankar meditative music without strong rhythm. </li></ul></ul></ul><ul><ul><ul><li>Other musical characteristics differed but weren’t study, so effects of those musical aspects are unknown. </li></ul></ul></ul><ul><ul><li>Found music could be used to control biochemical levels </li></ul></ul><ul><ul><li>Only the Ravi Shankar music reduced cortisol and noradrenaline levels </li></ul></ul><ul><ul><li>For a sample of Ravi Shankar’s music, see the link below </li></ul></ul><ul><ul><li>http://www.youtube.com/watch?v=LzN2gUGYUGc (about 9 minutes) </li></ul></ul><ul><ul><li>http://www.youtube.com/watch?v=Vjg5hU3MfIw&feature=related (about 6.5 min) </li></ul></ul>
  51. 51. Pain Control, Brain Control <ul><li>We have already read about the effectiveness of music to “mask” pain before, during, and after surgery. </li></ul><ul><li>Music can also calm the stress response during preoperative activities. </li></ul>
  52. 52. Music & Dance: Socializing Biotechnology <ul><li>Music & dance serve as a “biotechnology” in creating communities </li></ul><ul><ul><li>Tribal societies use rituals involving rhythmic music and dancing until exhaustion </li></ul></ul><ul><ul><li>Music and dance… </li></ul></ul><ul><ul><ul><li>… are technologies that involve biological processes </li></ul></ul></ul><ul><ul><ul><li>These biotechnologies (music & dance) and the biochemical responses serve to bond people into communities </li></ul></ul></ul><ul><ul><li>“ Trance states…remove pre-existing habits and beliefs. The bonding is not simply a release of a neurochemical in an altered state. It is the social action of dancing and singing together, which induces new forms of behavior, owing to the malleability that can come through the altered state.” (Freeman, 2007) </li></ul></ul><ul><ul><ul><li>Perhaps this phenomenon helps explain why rhythmic music therapy done in groups is effective with patients with Alzheimer’s and other neurodegenerative conditions? </li></ul></ul></ul>
  53. 53. Music & Dance: Socializing Biotechnology <ul><ul><li>“ Feelings of bonding and the formation of a neural basis for social cooperation might be engendered by the same neurochemical mechanisms that evolved to support sexual reproduction[, mechanisms] that might mediate religious, political, and social conversions, involving commitment of the self to a person as in transference, fraternity, military group, sports team, corporation, nation, or new deity. The common feature is the formation of allegiance and trust .” (Freeman, 2007) </li></ul></ul><ul><ul><li>“ Music as sound appeals to the ear, but the making and appreciation of music involve the entire body through the somatosensory and motor systems of the performer and the active audience (Clynes 1982). Dance…its real charm is found by the participants who shape their movements into a living and evolving unity. The strongest basis for the cooperation lies in rhythmically repeated motions, because they are predictable by others, and others can thereby anticipate and move in accord with their expectations. Music gives the background beat.” </li></ul></ul>
  54. 54. Music & Dance: Socializing Biotechnology <ul><ul><li>Music builds trust between and predictability in each member of the community. Trust and predictability are basis for social interactions . </li></ul></ul><ul><ul><li>Although we need more than dance to form a society, dance is an example of a wordless give-and-take cooperation . </li></ul></ul><ul><ul><li>Cooperation builds “channels” for verbal communication . </li></ul></ul><ul><ul><li>“A significant discovery by our remote ancestors may have been the use of music and dance for bonding in groups larger than nuclear families.” (Freeman, 2007) </li></ul></ul>
  55. 55. The Rhythmic Brain <ul><li>The Rhythmic Brain </li></ul><ul><ul><li>Eric Barnhill and Stephanie Chase </li></ul></ul><ul><ul><li>Presentation (Feb 2008) at the Philoctetes Center: The Multidisciplinary Study of Imagination </li></ul></ul><ul><ul><li>Music processes in the brain are important to understanding the rest of the brain </li></ul></ul><ul><ul><li>Music can give the brain order where order was lacking </li></ul></ul><ul><ul><li>Why we use music when we speak </li></ul></ul><ul><ul><li>Why movement is important in understanding music and the brain </li></ul></ul><ul><ul><li>http://www.youtube.com/watch?v=Fxgnp1dvHEI </li></ul></ul><ul><ul><li>(104 minutes: First 20 minutes are presentation; rest of video is a question-answer period with the audience) </li></ul></ul>
  56. 56. New & Exciting: Making More of the Music-Brain Connection <ul><li>New kinds of music and music technology </li></ul><ul><li>Ted Machover, MIT Media Lab, April 2008 </li></ul><ul><ul><li>New technologies such as the “Hyperinstrument,” the “Brain Opera,” Guitar Hero (Game), Music-Mind-Health Tools </li></ul></ul><ul><ul><li>http://www.ted.com/index.php/talks/view/id/246 </li></ul></ul><ul><ul><li>(20 minutes) </li></ul></ul>
  57. 57. Music Connects Individuals <ul><li>Freeman (1997) wrote, “The barrier [between people] is not merely the skin and bone around each brain. It is the private language in each brain, in some respects like the labeling of the self by the immune system. Yet brains arise and are shaped in evolution, not as isolated entities, but as units in societies ranging upwards from pairs to empires. Rainer Maria Rilke described the way in which individuals resonate together in his poem “Liebeslied” (“Love Song” in Neue Gedichte , 1907, pp. 239-240): </li></ul><ul><ul><li>Yet all that touches us, you and me, </li></ul></ul><ul><ul><li>takes us together like a violin bow, </li></ul></ul><ul><ul><li>that draws one voice from two strings. </li></ul></ul><ul><ul><li>On what instrument are we strung? </li></ul></ul><ul><ul><li>And which violinist has us in hand? </li></ul></ul><ul><ul><li>O sweet song. </li></ul></ul><ul><ul><li>[Freeman’s translation] </li></ul></ul><ul><li>“ For biologists, the instrument is brain chemistry, and the player is evolution. The growth from within each individual is necessary in order that each brain cope with the infinite complexity of the world, but cooperation with other brains is also a social imperative , because the gulf must be bridged.” </li></ul>
  58. 58. May we continue to resonate together in the dance of life within the music of the spheres…
  59. 59. References <ul><li>Barnhill, Eric and Case, Stephanie. (Posted Feb 2008) “The Rhythmic Brain.” Presentation January 14, 2008 at the Philoctetes Center: The Multidisciplinary Study of Imagination. Available online from http://www.youtube.com/watch?v=Fxgnp1dvHEI </li></ul><ul><li>Boeree, C. George. 2003. Neurotransmitters. Web page available online at http://webspace.ship.edu/cgboer/genpsyneurotransmitters.html </li></ul><ul><li>Boyer, E.W. & Shannon, M. 2005. Medical Biology: On the Serotonin Syndrome. New England Journal of Medicine (352): 1112. Available from ScienceWeek at http://scienceweek.com/2005/sw050408-5.htm </li></ul><ul><li>Freeman, Walter J. 1997. “A Neurobiological Role of Music in Social Bonding.” In N. Wallin, B. Merkur, and S. Brown (Eds.) Chapter 22 in The Origins of Music: Proceedings of a Conference, Florence, Italy, May 31, 1997 , pp. 411-24. </li></ul><ul><li>Green, AC, Bærentsen, KB, Stødkilde-Jørgensen, H, Wallentin, M, Roepstorff, A, Vuust, P. May 7, 2008. Music in minor activates limbic structures: a relationship with dissonance? Neuroreport (19)7:711-715. Also available online at http://www.ncbi.nlm.nih.gov/pubmed/18418244?ordinalpos=24&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum </li></ul><ul><li>Kumar, Adarsh M.; Tims, Frederick; Cruess, Dean G.; Mintzer, Michael J.; Ironson, Gail; Loewenstein, David; Cattan, Rogelio; Fernandez, J. B.; Eisdorfer, Carl; Kumar, Mahendra. November 1999. “Music Therapy Increases Serum Melatonin Levels in Patients with Alzheimer’s Disease.” Alternative Therapies in Health and Medicine, Vol. 5, No. 6. </li></ul><ul><li>Levitin, Daniel J. “Amygdala & nucleus circumbens: sex, drugs, and rock ‘n roll.” Video on the Life Soundtrack Study by neuroscientist Dr. Daniel J. Levitin available online from http://www.youtube.com/watch?v=0CpKPBYXhsM </li></ul><ul><li>Machover, Ted (of the MIT Media Lab). April 2008. “Music-Mind-Health Tools.” Presentation at the Technology, Entertainment, and Design Conference. Available online from http://www.ted.com/index.php/talks/view/id/246 </li></ul><ul><li>Marieb, E.N. 2006. “Exercise 27: Functional Anatomy of the Endocrine Glands.” Human Anatomy and Physiology Laboratory Manual. 7th ed, main version. 294-300. </li></ul><ul><li>Molavi, Diana Weedman. 1997. Neuroscience Tutorial: An Illustrated Guide to the Essential Basics of Clinical Neuroscience Created in Conjunction with the First-Year Course for Medical Students. Washington: Washington University of Medicine. Available online: http://thalamus.wustl.edu/course/ </li></ul><ul><li>Northwestern University. March 13, 2007. &quot;Music Training 'Tunes' Human Auditory System.&quot; ScienceDaily. Accessed March 24, 2008 from http://www.sciencedaily.com­ /releases/2007/03/070312152003.htm </li></ul><ul><li>Taylor, Jill Bolte. “Stroke...of Genius.” Presentation at the Technology, Entertainment, and Design Conference. Accessed February 27, 2008. Available online from http://www.ted.com/talks/view/id/229 </li></ul><ul><li>Tortora, G. J. and B. Derrickson. 2006. “Chapter 18: The Endocrine System; The Endocrine System and Homeostasis.” Principles of Anatomy and Physiology. Hoboken, N. J.: John Wiley and Sons, Inc. 616-665. </li></ul><ul><li>Weinberger, Norman M. Fall 1997. “The Musical Hormone.” Musica, Vol. IV, Issue 2. Available online at http://www.musica.uci.edu/mrn/V4I2F97.html#hormone </li></ul><ul><li>Weinberger, Norman M. Fall 1997. “The Neurobiology of Musical Learning and Memory.” Musica, Vol. IV, Issue 2. Available online at http://www.musica.uci.edu/mrn/V4I2F97.html#neurobiology </li></ul><ul><li>Zeev, Kain; Ayoub, Chakib; Rizk, Laudi; Yaacoub, Chadi; and Gaal, Dorothy. May 2005. &quot;Patients' Favorite Music During Surgery Lessens Need For Sedative.&quot; Anesthesia & Analgesia Vol. 100, pp 1316-1319. Abstract available online from <http://www.sciencedaily.com­ /releases/2005/05/050527111729.htm>. </li></ul>

×