Asahi Kasei - Qyu speed d aex

2,152 views

Published on

Asahi Kasei - Qyu speed d aex
Bioprocess Innovation

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,152
On SlideShare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
0
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • You can see the cut of one hollow fiber. The flow direction is from inside to outside. The flow will go through the micropore structure of the membrane . Inside each micropore you have grafted chains of poly glycidyl methacrylate. And on each chain, several ligands DEA are attached. The ligand density is very high: around 0.6 mmol/mL-ads. \n
  • The separation mechanism is very simple. The protein solution goes inside the hollow fiber and will permeate through the membrane structure from inside to oustide. The grafted chains with the DEA ligands offer multipoint adsorption leading to a high dynamic binding capacity. \n
  • QyuSpeed D can be used in flow through mode to bind impurities, negatively charged, from your protein or Mab solutions: DNA, Viruses, HCP, Prion, Endotoxin.\nPlease note that it is also possible to use our QyuSpeed D membrane in bind-elute mode to bind and concentrate specific proteins such as FVIII, fibrinogen, FIX, etc. \n
  • Already 3 sizes are available. 0.6 mL MV able to process up to 8 mL/min, etc… Our 5L module will be available end of 2012. The length of the 550 mL module is only 315 mm, proving the compact design of QyuSpeed D modules.\n
  • \n
  • \n
  • \n
  • The main difference is regarding the mass transfer: convection for membrane and diffusion for resin\nDBC is independant of the flow rate unlike resine which needs a high enough contact time.\nFlow rates are much higher with membrane 5-20 MV*/min vs. 0.5-2 CV**/min. \nVery high flow rates w/o high pressure drop.\n
  • \n
  • \n
  • \n
  • Here you can see a big table summarising the performances and characteristics of the main AEX membranes on the market an also for a standard Q resin. \n
  • Even if DBC for BSA is used as a standard specification given by all suppliers, in the « real life » we are more interested in DNA, HCP and virus removal capacities.\nAt low conductivity, standard AEX resin and membrane 1 show poor DNA DBC whereas Membrane 2, Membrane 3 and QyuSpeed D show similar performances. \nIf the conductivity is higher, around 15 mS/cm, Q resin and Membrane 2 do not work properly. Membrane 1 must be replaced by another type of membrane from the same supplier. Membrane 3 and QyuSpeed D can maintain very high performances.\n
  • All technologies have similar performances which proves the efficiency of AEX chromatography to remove viruses. \n
  • \n
  • This is the main difference between QyuSpeedD and the other membranes on the market. QyuSpeedD can be regenerated simply like a resin. Asahi already validated 10 times regeneration with no change in BSA DBC. Of course, like for the resins, it is up to the customer to validate more regeneration cycles if necessary. Internally we could go up to 100 regenerations!\n
  • \n
  • \n
  • This slide can simply summarise the previous list with all advantages. One large column can be replaced by one or a few compact QyuSpeedD modules.\n
  • The objective of this cost simulation is to determine in which situations, Q resin, Single use AEX membrane or QyuSpeed D are the most attractive.\n
  • \n
  • \n
  • First, we estimated the buffer volumes needed for each technologies. We used data given by the suppliers.\nThe process steps are as follow: ……\n
  • So we need 25 CV for the Q resin, 40 MV for the single use Q membrane and 85 MV for QyuSpeed D. Of course, the buffer volumes can be optimized during a validation study.\n
  • \n
  • Then, we calculated all the costs for 1 cycle. \nWe used the following loading capacities: 150 g/L for the Q resin and 2000 g/L for the Q membrane and QyuSpeed D. \nWe considered 3 different batch volumes 100, 1500, 5000 L and therefore 3 different protein loadings according to the Mab concentration of 2 g/L: 0,2, 3 and 10 kg.\n
  • Then, we calculated the resin and membrane volumes needed. As already said previously, Membrane chromatography technology leads to a much lower volume of chromatography medium.\n
  • According to the resin and membrane volumes we calculated the costs of each technologies. \n
  • According to the resin and membrane volume we also calculated the buffer volumes needed. The buffer consumptions are considerably reduced with membrane chromatography.\n
  • According to the buffer volumes we calculated the buffer costs which are logicaly considerably reduced too.\n
  • We aslo estimated the labor times for each technology: 5h for the Q resin, 1,5h for the single use Q membrane and 2,5h for Qyuspeed D.\n
  • According to the labor times we calculated the labor costs.\n
  • Finaly we estimated the hardware costs and validation costs. These estimations are subjective but nevetheless we believe they are representive of the costs.\nNote that the validation cost for QyuSpeed D is half of the validation cost for Q resin because only the regeneration step must be validated. \n
  • So, we could find all the costs associated to 1 cycle.\n
  • \n
  • We did the cost simulation for for 10 and 40 batches/year during 5 years. We considered 100 uses for the Q resin and 15 uses for the QyuSpeedD.\n
  • For 100L batch volume or 0,2 kg protein loading, the single use Q membrane is the most cost effective, 2nd position QyuSpeed D and last position the Q resin.\n
  • For 1500L batch volume or 3 kg protein loading, there are 2 main results:\nwith 10 batches/year, Q membrane single use and QyuSpeed D are both the most cost effective. \nwith 40 batches/year, QyuSpeed D is the most cost effective, 2nd position the Q resin and last position the single use Q membrane.\n
  • For the largest volume, 5000L batch volume or 10 kg protein loading, QyuSpeed D is the most cost effective, 2nd position the Q resin and last position the single use Q membrane.\n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Asahi Kasei - Qyu speed d aex

    1. 1. QyuSpeed DAEX chromatography membrane,a highly cost effective technology5th ANNUAL BIO INNOVATION15-16th February 2012London UKBixente MARTIRENE – MSc Chem. Eng.Product ManagerAsahi Kasei Bioprocess Europe
    2. 2. ContentPART 1 – Asahi Kasei BioprocessPART 2 – QyuSpeed DPART 3 – Membrane vs. ResinPART 4 – PerformancesPART 5 – Cost simulation: Q resin, Single Use Q membrane, QyuSpeed D
    3. 3. PART 1 – Asahi Kasei Bioprocess
    4. 4. Asahi Kasei GroupHQ: Tokyo; Foundation: 1931; Employees: 25 000; Turnover: 16 B$ Asahi Kasei Medical BIOPROCESS Leukocyte Reduction (SepacellTM) 4
    5. 5. Asahi Kasei Bioprocess For 20 years, leader in virus removal filtration with Planova filters range. From 4.0 m2 down to 0.001 m2 surface area 5
    6. 6. Asahi Kasei Bioprocess For 20 years, leader in virus removal filtration with Planova filters range. From 2010, new separation and purification solutions, for biopharmaceuticals production. New products based on Asahi’s core technology (hollow fibers) and high quality standards. 6
    7. 7. Membranes for USP and DSP 7
    8. 8. PART 2 – QyuSpeed D
    9. 9. SpecificationsFilter Format Hollow FiberLigand type Anion exchangeLigand DEA : -N+H-(CH2CH3)2Pore Size 0.2 - 0.3 µmMembrane Material PolyethyleneFiber ID / OD 2.2 mm / 3.6 mmOperating Pressure < 2 barReusable after regeneration Yes Outlet Inlet Drain Hollow fiber 9
    10. 10. Pore structure and ligand configuration Poly (glycidyl methacrylate) Chain (backbone of the grafted chain) micropore ) H3C- C-C-O-CH2CHCH2 = H 2C O HO N(CH2CH3)2 ) ( H3C- C-C-O-CH2CHCH2 = O HO N(CH2CH3)2 H 2C (MicroporeNominal pore size: Grafted chain Anion-exchange group (DEA)0.2-0.3 µm Flow direction Ligand density: 0.55-0.6 mmol/mL-ads 1200um SEM x25 10
    11. 11. Separation mechanism Selectivity by ligand type. Grafted chains Multipoint adsorption High Dynamic Binding Capacity (DBC). Protein solution Proteins - Proteins + Convective flow Grafted chain with Ligands Hollow Fiber Pore of the membrane 11
    12. 12. ApplicationRemoval of impurities from protein/MAb solutions:DNA, Viruses, HCP, Prion, Endotoxin. Host cell protein Endotoxin Isoelectric DNA Viruses Point 2 7 MAbs 12 Binding of Flow through of impurities - pH protein/MAb + buffer 12
    13. 13. Product line Lab-filter Membrane Volume 0.6 mL Max Flow rate 8 mL/min Availability From 2010 2-inch-filter Membrane Volume 150 mL Max Flow rate 2 L/min Availability Mid 2011 4-inch-filter Membrane Volume 550 mL Max Flow rate 8 L/min Availability End 2011 QyuSpeedD-5L end 2012!315 mm 13
    14. 14. Where implementing QyuSpeed D ? Before or after Protein A. High salt tolerance = possible after CEX without any prior dilution. Centri- AIEX Depth fugation Filtration or Protein A 0.2 µm Planova UF filtration CIEX Tangential MF 14
    15. 15. Where implementing QyuSpeed D ?After cell culture, 3 actions in 1 single step: Cell culture clarification, AEX chromatography, “Protection” of Protein A. Centri- AIEX Depth fugation Filtration or Protein A 0.2 µm Planova UF filtration CIEX Tangential MF 15
    16. 16. PART 3 – Membrane vs. Resin
    17. 17. Membrane vs. Resin  Convective vs. diffusive mass transfer.  DBC independent of the flow rate.  5-20 MV*/min vs. 0.5-2 CV**/min.  Very high flow rates w/o high pressure drop.*MV: Membrane Volume**CV: Column Volume Electron micrograph Electron micrograph of QyuSpeed D of resin beads 17
    18. 18. Membrane vs. ResinResin columns can be oversized because :slow binding mechanism by diffusion,bed height limitation (~ 20-30 cm) to avoid toohigh pressure drop,poor salt tolerance, lower impurities DBC than claimed BSA DBC. 18
    19. 19. Membrane vs. Resin To purify the same protein solution:Membrane Volume (MV) << Column Volume (CV) MAb loading capacity: often > 2 000 g/L-QSD 19
    20. 20. PART 4 – Performances
    21. 21. Main AEX membranes - Performances Q resin Membrane 1 Membrane 2 Membrane 3 QyuSpeed D Configuration Beads Rolled Sheet Open Pleated Stacked Flat Sheet Hollow fibers Medium Material Agarose Cellulose PES PE PE -N+-(CH3)3 -N+-(CH3)3 Quaternary -N+H- Ligand Primary amine amine (CH2CH3)2 Max Flow rate 1 CV/min 30 MV/min 10 MV/min 12.5 MV/min 13.5 MV/min Pore Size - > 3 µm 0.8 µm 0.65 µm 0.2-0.3 µm 10% BSA DBC > 100 > 29 > 60 > 50 > 40 (g/L-medium) 10% DNA DBC <5 < 10 < 35 < 35 < 35 (g/L-medium) at ~ 0 mS/cm 10% DNA DBC < 30 Not applicable. <2 < 30 < 30 (g/L-medium) (if another Max 5 mS/cm type) at 15 mS/cm Virus LRV > 3-4 > 3-4 > 3-4 >4 >4 Usually much lower reduction than for DNA and Viruses. Very much depending on the operating HCP reduction conditions and HCP characteristics (large pI range). Number of Up to 100 Single use Not precised Single use > 10 regenerations 21
    22. 22. Main AEX membranes - Performances Q resin Membrane 1 Membrane 2 Membrane 3 QyuSpeed D Configuration Beads Rolled Sheet Open Pleated Stacked Flat Sheet Hollow fibers Medium Material Agarose Cellulose PES PE PE -N+-(CH3)3 -N+-(CH3)3 Quaternary -N+H- Ligand Primary amine amine (CH2CH3)2 Max Flow rate 1 CV/min 30 MV/min 10 MV/min 12.5 MV/min 13.5 MV/min Pore Size - > 3 µm 0.8 µm 0.65 µm 0.2-0.3 µm 10% BSA DBC > 100 > 29 > 60 > 50 > 40 (g/L-medium) 10% DNA DBC <5 < 10 < 35 < 35 < 35 (g/L-medium) at ~ 0 mS/cm 10% DNA DBC < 30 Not applicable. <2 < 30 < 30 (g/L-medium) (if another Max 5 mS/cm at 15 mS/cm type) Virus LRV > 3-4 > 3-4 > 3-4 >4 >4 Usually much lower reduction than for DNA and Viruses. Very much depending on the operating HCP reduction conditions and HCP characteristics (large pI range). Number of Up to 100 Single use Not precised Single use > 10 regenerations 22
    23. 23. Main AEX membranes - Performances Q resin Membrane 1 Membrane 2 Membrane 3 QyuSpeed D Configuration Beads Rolled Sheet Open Pleated Stacked Flat Sheet Hollow fibers Medium Material Agarose Cellulose PES PE PE -N+-(CH3)3 -N+-(CH3)3 Quaternary -N+H- Ligand Primary amine amine (CH2CH3)2 Max Flow rate 1 CV/min 30 MV/min 10 MV/min 12.5 MV/min 13.5 MV/min Pore Size - > 3 µm 0.8 µm 0.65 µm 0.2-0.3 µm 10% BSA DBC > 100 > 29 > 60 > 50 > 40 (g/L-medium) 10% DNA DBC <5 < 10 < 35 < 35 < 35 (g/L-medium) at ~ 0 mS/cm 10% DNA DBC < 30 Not applicable. <2 < 30 < 30 (g/L-medium) (if another Max 5 mS/cm type) at 15 mS/cm Virus LRV > 3-4 > 3-4 > 3-4 >4 >4 Usually much lower reduction than for DNA and Viruses. Very much depending on the operating HCP reduction conditions and HCP characteristics (large pI range). Number of Up to 100 Single use Not precised Single use > 10 regenerations 23
    24. 24. Main AEX membranes - Performances Q resin Membrane 1 Membrane 2 Membrane 3 QyuSpeed D Configuration Beads Rolled Sheet Open Pleated Stacked Flat Sheet Hollow fibers Medium Material Agarose Cellulose PES PE PE -N+-(CH3)3 -N+-(CH3)3 Quaternary -N+H- Ligand Primary amine amine (CH2CH3)2 Max Flow rate 1 CV/min 30 MV/min 10 MV/min 12.5 MV/min 13.5 MV/min Pore Size - > 3 µm 0.8 µm 0.65 µm 0.2-0.3 µm 10% BSA DBC > 100 > 29 > 60 > 50 > 40 (g/L-medium) 10% DNA DBC <5 < 10 < 35 < 35 < 35 (g/L-medium) at ~ 0 mS/cm 10% DNA DBC < 30 Not applicable. <2 < 30 < 30 (g/L-medium) (if another Max 5 mS/cm type) at 15 mS/cm Virus LRV > 3-4 > 3-4 > 3-4 >4 >4 Usually much lower reduction than for DNA and Viruses. Very much depending on the operating HCP reduction conditions and HCP characteristics (large pI range). Number of Up to 100 Single use Not precised Single use > 10 regenerations 24
    25. 25. Main AEX membranes - Performances Q resin Membrane 1 Membrane 2 Membrane 3 QyuSpeed D Configuration Beads Rolled Sheet Open Pleated Stacked Flat Sheet Hollow fibers Medium Material Agarose Cellulose PES PE PE -N+-(CH3)3 -N+-(CH3)3 Quaternary -N+H- Ligand Primary amine amine (CH2CH3)2 Max Flow rate 1 CV/min 30 MV/min 10 MV/min 12.5 MV/min 13.5 MV/min Pore Size - > 3 µm 0.8 µm 0.65 µm 0.2-0.3 µm 10% BSA DBC > 100 > 29 > 60 > 50 > 40 (g/L-medium) 10% DNA DBC <5 < 10 < 35 < 35 < 35 (g/L-medium) at ~ 0 mS/cm 10% DNA DBC < 30 Not applicable. <2 < 30 < 30 (g/L-medium) (if another Max 5 mS/cm type) at 15 mS/cm Virus LRV > 3-4 > 3-4 > 3-4 >4 >4 Usually much lower reduction than for DNA and Viruses. Very much depending on the operating HCP reduction conditions and HCP characteristics (large pI range). > 10 Number of Up to 100 Single use Not precised Single use regenerations (up to 100 possible) 25
    26. 26. QyuSpeed D advantages Shorter processing time. High salt tolerance. MV << CV (= less chromatographic medium). Lower buffer consumptions. 26
    27. 27. QyuSpeed D advantages Shorter processing time. High salt tolerance. MV << CV (= less chromatographic medium). Lower buffer consumptions. No packing. Less labor costs. Less hardware equipment. Smaller footprint. Easy/reliable scale up by adding modules. 27
    28. 28. QyuSpeed D advantages QyuSpeed D 550 mL MVChromatographycolumn 50 L CV 28
    29. 29. PART 5 – Cost simulation:Q resin, Single Use Q membrane and QyuSpeed D, for different batch sizes anddifferent numbers of batches/year
    30. 30. Cost simulation - Hypothesis Comparisons between QyuSpeed D, single use Q membrane, Q resin. MAb production from CHO cell culture with standard DSP steps. Each technology leads to similar purification yields. Protein concentration before AEX: 2 g/L. Conductivity of the MAb solution before loading: < 5 mS/cm. 3 loading volumes:100 L (small), 1 500 L (medium), 5 000 L (large) Number of batches : 10/year, 40/year 30
    31. 31. Cost simulation - Hypothesis Comparisons between QyuSpeed D, single use Q membrane, Q resin. MAb production from CHO cell culture with standard DSP steps. Each technology leads to similar purification yields. Protein concentration before AEX: 2 g/L. Conductivity of the MAb solution before loading: < 5 mS/cm. 3 loading volumes:100 L (small), 1 500 L (medium), 5 000 L (large) Number of batches : 10/year, 40/year Cost calculations based on 5 years operation. Q resin: 100 uses; QyuSpeed D: 15 uses. Buffer volume for packing step is not counted. P r i c e s : - Q resin: 700 $/L-medium; - Q membrane: 7 000 $/L- medium; - QyuSpeed D: 14 000 $/L- medium. Labor cost: 350 $/h (2 operators) 31
    32. 32. Buffer volumes for 1 cycle Q membrane QyuSpeed D Process step Q resin (single use) (reusable) Flush WFI (CV* or MV**) Pre-wash with buffer (CV or MV) Equilibration with buffer (CV or MV) Washing with buffer (CV or MV) Regeneration with NaCl and NaOH (CV or MV)Total buffer volume per cycle (CV or MV)*CV: Column Volume**MV: Membrane Volume 32
    33. 33. Buffer volumes for 1 cycle Q membrane QyuSpeed D Process step Q resin (single use) (reusable) Flush WFI 5 10 - (CV* or MV**) Pre-wash with buffer 5 10 10 (CV or MV) Equilibration with buffer 5 10 15 (CV or MV) Washing with buffer 5 10 10 (CV or MV) Regeneration with NaCl and NaOH 5 - 50 (CV or MV)Total buffer volume per cycle (CV or MV) 25 40 85*CV: Column Volume**MV: Membrane Volume 33
    34. 34. Buffer volumes for 1 cycle Q membrane QyuSpeed D Process step Q resin (single use) (reusable) Flush WFI 5 10 - (CV* or MV**) Pre-wash with buffer 5 10 10 (CV or MV) Equilibration with buffer 5 10 15 (CV or MV) Washing with buffer 5 10 10 (CV or MV) Regeneration with NaCl and NaOH 5 - 50 (CV or MV)Total buffer volume per cycle (CV or MV) 25 40 85*CV: Column Volume Buffer cost: ~ 2 $/L**MV: Membrane Volume 34
    35. 35. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1000 10000 100 1000 10000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) Resin or Membrane cost (k$) Buffer volume (L) Buffer cost (k$) Labor time (h) Labor cost (k$) Hardware cost (k$) Validation cost (k$) 35
    36. 36. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) 1 20 67 0,10 1 5 0,10 2 5 Resin or Membrane cost (k$) Buffer volume (L) Buffer cost (k$) Labor time (h) Labor cost (k$) Hardware cost (k$) Validation cost (k$) 36
    37. 37. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) 1 20 67 0,10 1 5 0,10 2 5 Resin or Membrane cost (k$) 1 9 93 1 7 70 1 14 140 Buffer volume (L) Buffer cost (k$) Labor time (h) Labor cost (k$) Hardware cost (k$) Validation cost (k$) 37
    38. 38. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) 1 20 67 0,10 1 5 0,10 2 5 Resin or Membrane cost (k$) Buffer volume (L) 33 500 1667 4 52 200 9 128 425 Buffer cost (k$) Labor time (h) Labor cost (k$) Hardware cost (k$) Validation cost (k$) 38
    39. 39. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) 1 20 67 0,10 1 5 0,10 2 5 Resin or Membrane cost (k$) Buffer volume (L) 33 500 1667 4 52 200 9 128 425 Buffer cost (k$) 0,07 1,00 3,33 0,01 0,10 0,40 0,02 0,26 0,85 Labor time (h) Labor cost (k$) Hardware cost (k$) Validation cost (k$) 39
    40. 40. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) Resin or Membrane cost (k$) Buffer volume (L) Buffer cost (k$) Labor time (h) 5 5 5 1,5 1,5 1,5 2,5 2,5 2,5 Labor cost (k$) Hardware cost (k$) Validation cost (k$) 40
    41. 41. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) Resin or Membrane cost (k$) Buffer volume (L) Buffer cost (k$) Labor time (h) 5 5 5 1,5 1,5 1,5 2,5 2,5 2,5 Labor cost (k$) 1,8 1,8 1,8 0,5 0,5 0,5 0,9 0,9 0,9 Hardware cost (k$) Validation cost (k$) 41
    42. 42. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) Resin or Membrane cost (k$) Buffer volume (L) Buffer cost (k$) Labor time (h) Labor cost (k$) Hardware cost (k$) 140 180 350 - - - - - - Validation cost (k$) 500 700 700 - - - 250 350 350 42
    43. 43. Costs for 1 cycle Q membrane QyuSpeedD Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10Resin or Membrane Volume (L) 1 20 67 0,10 1 5 0,10 2 5 Resin or Membrane cost (k$) 1 9 93 1 7 70 1 14 140 Buffer volume (L) 33 500 1667 4 52 200 9 128 425 Buffer cost (k$) 0,07 1,00 3,33 0,01 0,10 0,40 0,02 0,26 0,85 Labor time (h) 5 5 5 1,5 1,5 1,5 2,5 2,5 2,5 Labor cost (k$) 1,8 1,8 1,8 0,5 0,5 0,5 0,9 0,9 0,9 Hardware cost (k$) 140 180 350 - - - - - - Validation cost (k$) 500 700 700 - - - 250 350 350 43
    44. 44. First Comments Membrane chromatography technology leads to a much lower volume of chromatography medium. The buffer consumptions are considerably reduced with membrane chromatography. 44
    45. 45. Cost simulation for 10 and 40 batches/year during 5 years Q membrane QyuSpeed D Q resin (single use) (reusable) Loading capacity 150 2000 2000(g protein/L-medium) Number of use 100 1 15 Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10 Total cost for 10 batches/year during 5 years (k$) Total cost for 40 batches/yearduring 5 years (k$) 45
    46. 46. Cost simulation for 10 and 40 batches/year during 5 years Q membrane QyuSpeed D Q resin (single use) (reusable) Loading capacity 150 2000 2000(g protein/L-medium) Number of use 100 1 15 Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10 Total cost for 10 batches/year 731 62 299 during 5 years (k$) Total cost for 40 batches/year 1 005 247 447during 5 years (k$) 46
    47. 47. Cost simulation for 10 and 40 batches/year during 5 years Q membrane QyuSpeed D Q resin (single use) (reusable) Loading capacity 150 2000 2000(g protein/L-medium) Number of use 100 1 15 Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10 Total cost for 10 batches/year 1 025 486 477 during 5 years (k$) Total cost for 40 batches/year 1 458 1 946 856during 5 years (k$) 47
    48. 48. Cost simulation for 10 and 40 batches/year during 5 years Q membrane QyuSpeed D Q resin (single use) (reusable) Loading capacity 150 2000 2000(g protein/L-medium) Number of use 100 1 15 Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10 Total cost for 10 batches/year 1 328 1 796 670 during 5 years (k$) Total cost for 40 batches/year 2 160 7 185 1 628during 5 years (k$) 48
    49. 49. Cost simulation for 10 and 40 batches/year during 5 years Q membrane QyuSpeed D Q resin (single use) (reusable) Loading capacity 150 2000 2000(g protein/L-medium) Number of use 100 1 15 Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10 Total cost for 10 batches/year 731 1 025 1 328 62 486 1 796 299 477 670 during 5 years (k$) Total cost for 40 batches/year 1 005 1 458 2 160 247 1 946 7 185 447 856 1 628during 5 years (k$) 49
    50. 50. Other Comments Membrane chromatography technology leads to a much lower volume of chromatography medium. The buffer consumptions are considerably reduced with membrane chromatography. Single use membrane chromatography is attractive with small to medium loading volumes, when small number of batches/year. QyuSpeed D is attractive with medium to large loading volumes, whatever small or high number of batches/year. QyuSpeed D is highly cost effective thanks to its regeneration capability. 50
    51. 51. Conclusion QyuSpeed D can replace current AEX chromatography steps in your DSP. Very efficient removal of DNA, Viruses, HCP, even at high conductivities. QyuSpeed D is a highly cost effective technology thanks to its regeneration capability. 51
    52. 52. ご清聴、ありがとうございま す。
    53. 53. Backup slides
    54. 54. DNA DBC vs. conductivityInternal study: Load solution: DNA 0.1g/L in 20mM Tris-HCl pH8.0, NaCl: 0M∼1.2M Flow rate:QSD: 2mL/min (3.6MV/min), Membrane A: 2mL/min (4.9MV/min) 40 0.3M NaCl 35 0.6M NaCl 10% DBC mg/mL-ad 30 25 Very high salt 20 QyuSpeed tolerance for 15 Membrane A DNA DBC 10 0.9 M NaCl 5 1.2M NaCl 0 0 20 40 60 80 100 Conductivity mS/cm 54
    55. 55. Parvovirus removalInternal study: 0.5 vol% Serum Free-PPV spike (106/mL) + 10 g/L human-IgG in 0.1M NaCl Conductivity: 10 mS/cm, pH 7.9 (adjusted with NaOH) LRV evaluation: fraction 150 mL, Hemagglutination assay TCID50 method Flow rate: 5.0 MV/min 6.0 1250 MV, 1200 L/m2 4.5 PPV LRV > 4 for 16 kg IgG/L-adPPV LRV 3.0 (25 kg IgG/m2) 1.5 QyuSpeed D 0 0 750 1500 2250 3000 MV (mL sol./Membrane volume) Throughput 55
    56. 56. IgG recovery and HCP removal Internal study:  10 g/L human-IgG + 0.1 mg/mL HCP  0.15M NaCl; 20 mM Tris-HCl; pH 7.5  Flow rate: 5.0 MV/min 100  Very high IgG recovery at high loading volumes 90 80  > 90% HCP removalIgG Recovery % 600 g IgG /L-media  Max IgG loading 70 depending on the 60 amount of impurities to 50 bind. 40 QyuSpeed D  Estimation: > 2000 g IgG/L-medium 30 20 10 0 0 20 40 60 80 100 Loading volume (MV) 56
    57. 57. Process configuration QyuSpeed D Scale up Waste ProductFeed Equilibration Elution / CIP 57
    58. 58. QyuSpeed D operation stepsSTEP- 1 Filter Connection and Air Removal Pre-washingSTEP- 2 and Leakage TestSTEP- 3 Membrane EquilibrationSTEP- 4 Sample LoadingSTEP- 5 Elution and Regeneration 58
    59. 59. Total Costs for 10 batches/Year during 5 years Q membrane QyuSpeed D Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Number of use 100 1 15 Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10 Resin or Membrane cost (k$) 0,5 7 23 35 455 1750 4,67 70 233,3 Buffer cost (k$) 3,33 50 167 0,4 5 20 1 13 43 Labor cost (k$) 88 88 88 26 26 26 44 44 44 Validation cost (k$) 500 700 700 - - - 250 350 350 Hardware cost (k$) 140 180 350 - - - - - - Total cost (k$) 731 1 025 1 328 62 486 1 796 299 477 670 59
    60. 60. Total Costs for 40 batches/Year during 5 years Q membrane QyuSpeed D Q resin (single use) (reusable) Loading capacity 150 2000 2000 (g protein/L-medium) Number of use 100 1 15 Loading volume (L) 100 1500 5000 100 1500 5000 100 1500 5000 Protein loading (kg) 0,2 3 10 0,2 3 10 0,2 3 10 Resin or Membrane cost (k$) 1,9 28 93 140 1820 7000 18,7 280 933,3 Buffer cost (k$) 13,3 200 667 1,6 21 80 3 51 170 Labor cost (k$) 350 350 350 105 105 105 175 175 175 Validation cost (k$) 500 700 700 - - - 250 350 350 Hardware cost (k$) 140 180 350 - - - - - - Total cost (k$) 1 005 1 458 2 160 247 1 946 7 185 447 856 1 628 60
    61. 61. ご清聴、ありがとうございま す。

    ×