Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
A hand-waving introduction to sparsity for compressed tomography reconstruction              Ga¨l Varoquaux and Emmanuelle...
1 Sparsity for inverse problems   2 Mathematical formulation   3 Choice of a sparse representation   4 Optimization algori...
1 Sparsity for inverse problems     Problem setting     IntuitionsG Varoquaux                          3
1 Tomography reconstruction: a linear problem                                    y = Ax                                   ...
1 Small n: an ill-posed linear problem          y = Ax          admits multiple solutions     The sensing operator A has a...
1 Small n: an ill-posed linear problem          y = Ax          admits multiple solutions     The sensing operator A has a...
1 A toy example: spectral analysis   Recovering the frequency spectrum                       Signal                       ...
1 A toy example: spectral analysis   Sub-sampling                         Signal                          Freq. spectrum  ...
1 A toy example: spectral analysis   Problem: aliasing                    Signal                        Freq. spectrum    ...
1 A toy example: spectral analysis   Problem: aliasing                     Signal                   Freq. spectrum   Solut...
1 A toy example: spectral analysis   Incoherent measurements, but scarcity of data                    Signal              ...
1 A toy example: spectral analysis   Incoherent measurements, but scarcity of data                      Signal            ...
1 And for tomography reconstruction?    Original image   Non-sparse reconstruction Sparse reconstruction              128 ...
1 Why does it work: a geometric explanation     Two coefficients of x not in the null-space of A:                      x2   ...
1 Why does it work: a geometric explanation     Two coefficients of x not in the null-space of A:                      x2   ...
1 Why does it work: a geometric explanation     Two coefficients of x not in the null-space of A:       x2              y=  ...
Recovery of sparse signal     Null space of sensing operator incoherent     with sparse representation  ⇒ Excellent sparse...
2 Mathematical formulation     Variational formulation     Introduction of noiseG Varoquaux                     12
2 Maximizing the sparsity      0   number of non-zeros              min 0(x)               x                              ...
2 Maximizing the sparsity      1 (x)   =   i   |xi |              min 1(x)               x                                ...
2 Modeling observation noise      y = Ax + e             e = observation noise     New formulation:                       ...
2 Modeling observation noise      y = Ax + e               e = observation noise     New formulation:                     ...
2 Probabilistic modeling: Bayesian interpretation                        P(x|y) ∝ P(y|x) P(x)                             ...
3 Choice of a sparse     representation     Sparse in wavelet domain     Total variationG Varoquaux                     16
3 Sparsity in wavelet representation    Typical images            Haar decomposition                         Level 1     L...
3 Sparsity in wavelet representation               Original image         Non-sparse reconstruction    Typical images     ...
3 Total variation     Impose a sparse gradient                               2              min y − Ax               x    ...
3 Total variation     Impose a sparse gradient                                 2              min y − Ax               x  ...
3 Total variation + interval     Bound x in [0, 1]                              2                  min y−Ax               ...
3 Total variation + interval     Bound x in [0, 1]                                2                  min y−Ax             ...
3 Total variation + interval     Bound x in [0, 1]                                     2                  min y−Ax        ...
Analysis vs synthesis                                   2     Wavelet basis min y − A H x   2   + x   1     H Wavelet tran...
Analysis vs synthesis     Wavelet basis min y − A H x 2 + x                                  2          1     H Wavelet tr...
4 Optimization algorithms     Non-smooth optimization      ⇒ “proximal operators”G Varoquaux                    21
4 Smooth optimization fails!         Gradient descent               Gradient descent                                    x2...
4 Iterative Shrinkage-Thresholding Algorithm   Settings: min f + g; f smooth, g non-smooth   f and g convex, f L-Lipschitz...
4 Iterative Shrinkage-Thresholding Algorithm    Settings: min f + g; f smooth, g non-smooth    f and g convex, f L-Lipschi...
4 Iterative Shrinkage-Thresholding Algorithm Step 1: Gradient descentsmooth, g non-smooth   Settings: min f + g; f on f   ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Iterative Shrinkage-Thresholding Algorithm               Gradient descent                                  x2           ...
4 Fast Iterative Shrinkage-Thresholding Algorithm               FISTA                Gradient descent                     ...
4 Proximal operator for total variation   Reformulate to smooth + non-smooth with a simple   projection step and use FISTA...
4 Proximal operator for total variation   Reformulate to smooth + non-smooth with a simple   projection step and use FISTA...
Sparsity for compressed tomography reconstruction  @GaelVaroquaux                                    27
Sparsity for compressed tomography reconstruction  Add penalizations with kinks                x2  Choice of prior/sparse ...
Bibliography (1/3)[Candes 2006] E. Cand`s, J. Romberg and T. Tao, Robust uncertainty                        eprinciples: E...
Bibliography (2/3)[Chen, Donoho, Saunders 1998] S. Chen, D. Donoho, M. Saunders,Atomic decomposition by basis pursuit, SIA...
Bibliography (2/3)[Beck Teboulle 2009], A. Beck and M. Teboulle, A fast iterativeshrinkage-thresholding algorithm for line...
Upcoming SlideShare
Loading in …5
×

A hand-waving introduction to sparsity for compressed tomography reconstruction

3,084 views

Published on

An introduction to the basic concepts needed to understand sparse reconstruction in computed tomography.

Published in: Technology
  • I think you need a perfect and 100% unique academic essays papers have a look once this site i hope you will get valuable papers, ⇒ www.HelpWriting.net ⇐
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • A professional Paper writing services can alleviate your stress in writing a successful paper and take the pressure off you to hand it in on time. Check out, please ⇒ www.HelpWriting.net ⇐
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (2019 Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download Full EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download Full doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... ......................................................................................................................... ................................................................................................................................... eBook is an electronic version of a traditional print book THIS can be read by using a personal computer or by using an eBook reader. (An eBook reader can be a software application for use on a computer such as Microsoft's free Reader application, or a book-sized computer THIS is used solely as a reading device such as Nuvomedia's Rocket eBook.) Users can purchase an eBook on diskette or CD, but the most popular method of getting an eBook is to purchase a downloadable file of the eBook (or other reading material) from a Web site (such as Barnes and Noble) to be read from the user's computer or reading device. Generally, an eBook can be downloaded in five minutes or less ......................................................................................................................... .............. Browse by Genre Available eBooks .............................................................................................................................. Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, ......................................................................................................................... ......................................................................................................................... .....BEST SELLER FOR EBOOK RECOMMEND............................................................. ......................................................................................................................... Blowout: Corrupted Democracy, Rogue State Russia, and the Richest, Most Destructive Industry on Earth,-- The Ride of a Lifetime: Lessons Learned from 15 Years as CEO of the Walt Disney Company,-- Call Sign Chaos: Learning to Lead,-- StrengthsFinder 2.0,-- Stillness Is the Key,-- She Said: Breaking the Sexual Harassment Story THIS Helped Ignite a Movement,-- Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones,-- Everything Is Figureoutable,-- What It Takes: Lessons in the Pursuit of Excellence,-- Rich Dad Poor Dad: What the Rich Teach Their Kids About Money THIS the Poor and Middle Class Do Not!,-- The Total Money Makeover: Classic Edition: A Proven Plan for Financial Fitness,-- Shut Up and Listen!: Hard Business Truths THIS Will Help You Succeed, ......................................................................................................................... .........................................................................................................................
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

A hand-waving introduction to sparsity for compressed tomography reconstruction

  1. 1. A hand-waving introduction to sparsity for compressed tomography reconstruction Ga¨l Varoquaux and Emmanuelle Gouillart eDense slides. For future reference: http://www.slideshare.net/GaelVaroquaux
  2. 2. 1 Sparsity for inverse problems 2 Mathematical formulation 3 Choice of a sparse representation 4 Optimization algorithmsG Varoquaux 2
  3. 3. 1 Sparsity for inverse problems Problem setting IntuitionsG Varoquaux 3
  4. 4. 1 Tomography reconstruction: a linear problem y = Ax 0 20 40 60 80 0 50 100 150 200 250 y ∈ Rn, A ∈ Rn×p, x ∈ Rp n ∝ number of projections p: number of pixels in reconstructed image We want to find x knowing A and yG Varoquaux 4
  5. 5. 1 Small n: an ill-posed linear problem y = Ax admits multiple solutions The sensing operator A has a large null space: images that give null projections In particular it is blind to high spatial frequencies:G Varoquaux 5
  6. 6. 1 Small n: an ill-posed linear problem y = Ax admits multiple solutions The sensing operator A has a large null space: images that give null projections In particular it is blind to high spatial frequencies: Large number of projections Ill-conditioned problem: “short-sighted” rather than blind, ⇒ captures noise on those componentsG Varoquaux 5
  7. 7. 1 A toy example: spectral analysis Recovering the frequency spectrum Signal Freq. spectrum signal = A · frequencies 0 2 4 6 8 ... 0 10 20 30 40 50 60G Varoquaux 6
  8. 8. 1 A toy example: spectral analysis Sub-sampling Signal Freq. spectrum signal = A · frequencies 0 2 4 6 8 ... 0 10 20 30 40 50 60 Recovery problem becomes ill-posedG Varoquaux 6
  9. 9. 1 A toy example: spectral analysis Problem: aliasing Signal Freq. spectrum Information in the null-space of A is lostG Varoquaux 7
  10. 10. 1 A toy example: spectral analysis Problem: aliasing Signal Freq. spectrum Solution: incoherent measurements Signal Freq. spectrum i.e. careful choice of null-space of AG Varoquaux 7
  11. 11. 1 A toy example: spectral analysis Incoherent measurements, but scarcity of data Signal Freq. spectrum The null-space of A is spread out in frequency Not much data ⇒ large null-space = captures “noise”G Varoquaux 8
  12. 12. 1 A toy example: spectral analysis Incoherent measurements, but scarcity of data Signal Freq. spectrum The null-space of A is spread out in frequency Not much data ⇒ large null-space Sparse Freq. spectrum = captures “noise” Impose sparsity Find a small number of frequencies to explain the signalG Varoquaux 8
  13. 13. 1 And for tomography reconstruction? Original image Non-sparse reconstruction Sparse reconstruction 128 × 128 pixels, 18 projections http://scikit-learn.org/stable/auto_examples/applications/ plot_tomography_l1_reconstruction.htmlG Varoquaux 9
  14. 14. 1 Why does it work: a geometric explanation Two coefficients of x not in the null-space of A: x2 y= Ax xtrue x1 The sparsest solution is in the blue cross It corresponds to the true solution (xtrue ) if the slope is > 45◦G Varoquaux 10
  15. 15. 1 Why does it work: a geometric explanation Two coefficients of x not in the null-space of A: x2 y= Ax xtrue x1 The sparsest solution is in the blue cross It corresponds to the true solution (xtrue ) if the slope is > 45◦ The cross can be replaced by its convex hullG Varoquaux 10
  16. 16. 1 Why does it work: a geometric explanation Two coefficients of x not in the null-space of A: x2 y= Ax xtrue x1 The sparsest solution is in the blue cross It corresponds to the true solution (xtrue ) if the slope is > 45◦ In high dimension: large acceptable setG Varoquaux 10
  17. 17. Recovery of sparse signal Null space of sensing operator incoherent with sparse representation ⇒ Excellent sparse recovery with little projections Minimum number of observations necessary: nmin ∼ k log p, with k: number of non zeros [Candes 2006] Rmk Theory for i.i.d. samples Related to “compressive sensing”G Varoquaux 11
  18. 18. 2 Mathematical formulation Variational formulation Introduction of noiseG Varoquaux 12
  19. 19. 2 Maximizing the sparsity 0 number of non-zeros min 0(x) x s.t. y = A x x2 y= Ax xtrue x1 “Matching pursuit” problem [Mallat, Zhang 1993] “Orthogonal matching pursuit” [Pati, et al 1993] Problem: Non-convex optimizationG Varoquaux 13
  20. 20. 2 Maximizing the sparsity 1 (x) = i |xi | min 1(x) x s.t. y = A x x2 y= Ax xtrue x1 “Basis pursuit” [Chen, Donoho, Saunders 1998]G Varoquaux 13
  21. 21. 2 Modeling observation noise y = Ax + e e = observation noise New formulation: 2 min 1 (x) x s.t. y = A x y − Ax 2 ≤ ε2 Equivalent: “Lasso estimator” [Tibshirani 1996] 2 min y − Ax x 2 + λ 1(x)G Varoquaux 14
  22. 22. 2 Modeling observation noise y = Ax + e e = observation noise New formulation: 2 min 1 (x) x s.t. y = A x y − Ax 2 ≤ ε2 Equivalent: “Lasso estimator” [Tibshirani 1996] 2 x2 min y − Ax x 2 + λ 1(x) Data fit Penalization x1 Rmk: kink in the 1 ball creates sparsityG Varoquaux 14
  23. 23. 2 Probabilistic modeling: Bayesian interpretation P(x|y) ∝ P(y|x) P(x) ( ) “Posterior” Forward model “Prior” Quantity of interest Expectations on x Forward model: y = A x + e, e: Gaussian noise ⇒ P(y|x) ∝ exp − 2 1 2 y − A x 2 σ 2 1 Prior: Laplacian P(x) ∝ exp − µ x 1 1 2 1 Negated log of ( ): 2σ 2 y − Ax 2 + µ 1 (x) Maximum of posterior is Lasso estimate Note that this picture is limited and the Lasso is not a goodG Varoquaux Bayesian estimator for the Laplace prior [Gribonval 2011]. 15
  24. 24. 3 Choice of a sparse representation Sparse in wavelet domain Total variationG Varoquaux 16
  25. 25. 3 Sparsity in wavelet representation Typical images Haar decomposition Level 1 Level 2 Level 3 are not sparse Level 4 Level 5 Level 6 ⇒ Impose sparsity in Haar representation A → A H where H is the Haar transformG Varoquaux 17
  26. 26. 3 Sparsity in wavelet representation Original image Non-sparse reconstruction Typical images Haar decomposition Level 1 Level 2 Level 3 are not sparse Level 4 Level 5 Level 6 Sparse image Sparse in Haar ⇒ Impose sparsity in Haar representation A → A H where H is the Haar transformG Varoquaux 17
  27. 27. 3 Total variation Impose a sparse gradient 2 min y − Ax x 2 +λ ( x)i 2 i 12 norm: 1 norm of the gradient magnitude Sets x and y to zero jointly Original image Haar wavelet TV penalizationG Varoquaux 18
  28. 28. 3 Total variation Impose a sparse gradient 2 min y − Ax x 2 +λ ( x)i 2 i 12 norm: 1 norm of the gradient magnitude Sets x and y to zero jointly Original image Error for Haar wavelet Error for TV penalizationG Varoquaux 18
  29. 29. 3 Total variation + interval Bound x in [0, 1] 2 min y−Ax x 2+λ ( x)i 2 +I([0, 1]) i Original image TV penalization TV + intervalG Varoquaux 19
  30. 30. 3 Total variation + interval Bound x in [0, 1] 2 min y−Ax x 2+λ ( x)i 2 +I([0, 1]) i TV Rmk: Constraint Histograms: TV + interval does more than fold- ing values outside of the range back in. 0.0 0.5 1.0 Original image TV penalization TV + intervalG Varoquaux 19
  31. 31. 3 Total variation + interval Bound x in [0, 1] 2 min y−Ax x 2+λ ( x)i 2 +I([0, 1]) i TV Rmk: Constraint Histograms: TV + interval does more than fold- ing values outside of the range back in. 0.0 0.5 1.0 Original image Error for TV penalization Error for TV + intervalG Varoquaux 19
  32. 32. Analysis vs synthesis 2 Wavelet basis min y − A H x 2 + x 1 H Wavelet transform Total variation min y − A x 2 + Dx 2 1 D Spatial derivation operator ( )G Varoquaux 20
  33. 33. Analysis vs synthesis Wavelet basis min y − A H x 2 + x 2 1 H Wavelet transform “synthesis” formulation Total variation min y − A x 2 + Dx 2 1 D Spatial derivation operator ( ) “analysis” formulation Theory and algorithms easier for synthesis Equivalence iif D is invertibleG Varoquaux 20
  34. 34. 4 Optimization algorithms Non-smooth optimization ⇒ “proximal operators”G Varoquaux 21
  35. 35. 4 Smooth optimization fails! Gradient descent Gradient descent x2Energy Iterations x1 Smooth optimization fails in non-smooth regions These are specifically the spots that interest usG Varoquaux 22
  36. 36. 4 Iterative Shrinkage-Thresholding Algorithm Settings: min f + g; f smooth, g non-smooth f and g convex, f L-Lipschitz Typically f is the data fit term, and g the penalty 1 2 1 ex: Lasso 2σ 2 y − Ax 2 + µ 1 (x)G Varoquaux 23
  37. 37. 4 Iterative Shrinkage-Thresholding Algorithm Settings: min f + g; f smooth, g non-smooth f and g convex, f L-Lipschitz Minimize successively: (quadratic approx of f ) + g f (x) < f (y) + x − y, f (y) 2 +L x − y 2 2 Proof: by convexity f (y) ≤ f (x) + f (y) (y − x) in the second term: f (y) → f (x) + ( f (y) − f (x)) upper bound last term with Lipschitz continuity of f   L 1 2 xk+1 = argmin g(x) + x − xk − f (xk ) 2  x 2 L [Daubechies 2004]G Varoquaux 23
  38. 38. 4 Iterative Shrinkage-Thresholding Algorithm Step 1: Gradient descentsmooth, g non-smooth Settings: min f + g; f on f f and g convex, f L-Lipschitz Step 2: Proximal operator of g: Minimize proxλg (x) def argmin y − x 2 + λ g(y) successively: = 2 y (quadratic approx of f ) + g Generalization of Euclidean projection f (x) < f (y) + x − y, f (y)1} on convex set {x, g(x) ≤ 2 Rmk: if g is the indicator function +L x − y 2 2 of a set S, the proximal operator is the Euclidean projection. Proof: by convexity f (y) ≤ f (x) + f (y) (y − x) prox in theλ 1 (x) = sign(x ) x − λ second term: f (y) → f (x) + ( i f (y) − f (x)) i + upper bound last term with Lipschitz continuity of f “soft thresholding”   L 1 2 xk+1 = argmin g(x) + x − xk − f (xk ) 2  x 2 L [Daubechies 2004]G Varoquaux 23
  39. 39. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Gradient descent stepG Varoquaux 24
  40. 40. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Projection on 1 ballG Varoquaux 24
  41. 41. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Gradient descent stepG Varoquaux 24
  42. 42. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Projection on 1 ballG Varoquaux 24
  43. 43. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Gradient descent stepG Varoquaux 24
  44. 44. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Projection on 1 ballG Varoquaux 24
  45. 45. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Gradient descent stepG Varoquaux 24
  46. 46. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1 Projection on 1 ballG Varoquaux 24
  47. 47. 4 Iterative Shrinkage-Thresholding Algorithm Gradient descent x2 ISTAEnergy Iterations x1G Varoquaux 24
  48. 48. 4 Fast Iterative Shrinkage-Thresholding Algorithm FISTA Gradient descent x2 ISTA FISTAEnergy Iterations x1 As with conjugate gradient: add a memory term ISTA tk −1 dxk+1 = dxk+1 + tk+1 (dxk − dxk−1 ) √ 1+ 2 1+4 tk t1 = 1, tk+1 = 2 ⇒ O(k −2 ) convergence [Beck Teboulle 2009]G Varoquaux 25
  49. 49. 4 Proximal operator for total variation Reformulate to smooth + non-smooth with a simple projection step and use FISTA: [Chambolle 2004] 2 proxλTV x = argmin y − x 2 +λ ( x)i 2 x iG Varoquaux 26
  50. 50. 4 Proximal operator for total variation Reformulate to smooth + non-smooth with a simple projection step and use FISTA: [Chambolle 2004] 2 proxλTV x = argmin y − x 2 +λ ( x)i 2 x i 2 = argmax λ div z + y 2 z, z ∞ ≤1 Proof: “dual norm”: v 1 = max v, z z ∞ ≤1 div is the adjoint of : v, z = v, −div z Swap min and max and solve for x Duality: [Boyd 2004] This proof: [Michel 2011]G Varoquaux 26
  51. 51. Sparsity for compressed tomography reconstruction @GaelVaroquaux 27
  52. 52. Sparsity for compressed tomography reconstruction Add penalizations with kinks x2 Choice of prior/sparse representation Non-smooth optimization (FISTA) x1Further discussion: choice of prior/parameters Minimize reconstruction error from degraded data of gold-standard acquisitions Cross-validation: leave half of the projections and minimize projection error of reconstruction Python code available: https://github.com/emmanuelle/tomo-tv @GaelVaroquaux 27
  53. 53. Bibliography (1/3)[Candes 2006] E. Cand`s, J. Romberg and T. Tao, Robust uncertainty eprinciples: Exact signal reconstruction from highly incomplete frequencyinformation, Trans Inf Theory, (52) 2006[Wainwright 2009] M. Wainwright, Sharp Thresholds forHigh-Dimensional and Noisy Sparsity Recovery Using 1 constrainedquadratic programming (Lasso), Trans Inf Theory, (55) 2009[Mallat, Zhang 1993] S. Mallat and Z. Zhang, Matching pursuits withTime-Frequency dictionaries, Trans Sign Proc (41) 1993[Pati, et al 1993] Y. Pati, R. Rezaiifar, P. Krishnaprasad, Orthogonalmatching pursuit: Recursive function approximation with plications towavelet decomposition, 27th Signals, Systems and Computers Conf 1993 @GaelVaroquaux 28
  54. 54. Bibliography (2/3)[Chen, Donoho, Saunders 1998] S. Chen, D. Donoho, M. Saunders,Atomic decomposition by basis pursuit, SIAM J Sci Computing (20) 1998[Tibshirani 1996] R. Tibshirani, Regression shrinkage and selection via thelasso, J Roy Stat Soc B, 1996[Gribonval 2011] R. Gribonval, Should penalized least squares regressionbe interpreted as Maximum A Posteriori estimation?, Trans Sig Proc,(59) 2011[Daubechies 2004] I. Daubechies, M. Defrise, C. De Mol, An iterativethresholding algorithm for linear inverse problems with a sparsityconstraint, Comm Pure Appl Math, (57) 2004 @GaelVaroquaux 29
  55. 55. Bibliography (2/3)[Beck Teboulle 2009], A. Beck and M. Teboulle, A fast iterativeshrinkage-thresholding algorithm for linear inverse problems, SIAM JImaging Sciences, (2) 2009[Chambolle 2004], A. Chambolle, An algorithm for total variationminimization and applications, J Math imag vision, (20) 2004[Boyd 2004], S. Boyd and L. Vandenberghe, Convex Optimization,Cambridge University Press 2004 — Reference on convex optimization and duality[Michel 2011], V. Michel et al., Total variation regularization forfMRI-based prediction of behaviour, Trans Med Imag (30) 2011 — Proof of TV reformulation: appendix C @GaelVaroquaux 30

×