Sitios óptimos para la energía de mareas

600 views

Published on


El proyecto producirá un modelo óptimo para seleccionar los mejores sitios de generación de energía de mareas, de acuerdo a la energía potencial, su proximidad a una red de transmisión existente, la existencia de tráfico acuático y el impacto ambiental. Las regiones del Amazonas y Maranhão se espera sean sitios ideales para capturar energía de las mareas.

Resultados: Desarrollo de un modelo matemático y la identificación de dos lugares óptimos.

Equipo del proyecto: Universidad Federal de Río de Janeiro, Fundación COPPETEC

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
600
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
8
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Sitios óptimos para la energía de mareas

  1. 1. OPTIMISATION OF SYSTEMS FOR THE EXTRACTION OF ENERGY FROM TIDAL CURRENTS Cartagena, Colombia November 2010 R. Y. Qassim
  2. 2. LET US LOOK AT THE LARGEST COMMERCIAL TIDAL CURRENT TURBINE IN OPERATION IN THE WORLD (NORTHERN IRELAND)
  3. 3. installed on steel pile transformer and electrical connection to grid in accessible and visible housing at top of pile
  4. 4. rotors raised above sea level for maintenance 2 x 600 kW rotors 16 m diameter
  5. 5. SOME KEY FEATURES: ♦ 2 x 600 kW rotors ♦ 16 m diameter ♦ installed on steel pile ♦ rotors raised above sea level for maintenance ♦ transformer and electrical connection to grid in accessible and visible housing at top of pile ♦ deployment in arrays or farms of hundreds of turbines
  6. 6. TURBINE TECHNOLOGY IN DEVELOPMENT: ♦ more rotors ♦ smaller diameter
  7. 7. ♦ particularly suitable for shallow rivers
  8. 8. SIMILARITIES WITH WIND ENERGY RESULTS IN: ♦ faster development ♦ higher potential of cost reduction with scale-up
  9. 9. DIFFERENCES WITH WIND ENERGY RESULTS IN: ♦ smaller turbines for same MW output ♦ more reliable power output
  10. 10. LEVELIZED COST OF ENERGY (LCOE) COMPARISON FOR 12 X 12 MW TURBINE FARM AND 34% INTEREST RATE: wind tidal initial investment cost US$1150/kW US$2000/kW operating & maintenance cost US$0.008/kW US$0.028/kW capacity factor 0.3 0.6 LCOE US$12.946/kWh US$6.497/kWh
  11. 11. SITE SELECTION CRITERIA: 1. Energy extraction potential. 2. Suitability of site bathymetry and site floor geology for turbine device foundation or anchoring system and submarine cable system to shore. This includes floor composition, sediment mobility potential, and floor changes with time. 3. Coastal utility grid and substation loads and capacities, and availability of a suitable onshore grid interconnection point with a capability of handling demonstration facility supply, say of 1.2MW, and potential for expansion to a commercial facility, say of 10 MW.
  12. 12. SITE SELECTION CRITERIA: 4. Proximity of infrastructure for turbine device fabrication and assembly, harbour service systems for system deployment, retrieval, and in – harbour repair. 5. Potential of conflict with competing uses of site space, such as navigation channel clearance, maintenance dredging activities, commercial fishing, and protected marine areas. 6. High local power demand and expansion forecast, with a view to eliminating the need for transmission and distribution system upgrade.
  13. 13. SÃO MARCOS BAY
  14. 14. SÃO MARCOS BAY
  15. 15. SÃO MARCOS BAY
  16. 16. SÃO MARCOS BAY
  17. 17. PROJECT WORK IN PROGRESS   TIDAL CURRENT TURBINE FARM LAYOUT OPTIMISATION
  18. 18. RESULTS ACHIEVED: 1. Mathematical model of scientific originality 2. Application in São Marcos Bay in Brazil 3. Identification of business opportunity in mineral and electricity generation companies in Brazil
  19. 19. Raad Yahya Qassim qassim@peno.coppe.ufrj.br (+55) 21 2562-8756 (+55) 21 9131-6217

×