3D Printing: Its Economic and Technical Rational


Published on

Master's students use ideas from my (Jeff Funk) forthcoming book (Technology Change and the Rise of New Industries) to analyze the technical and economic feasibility of 3D additive printing. Manufacturing parts using additive fabrication techniques can enable on-demand local manufacturing and thus can eliminate complex value chains. See my other slides for details on concepts, methodology, and other new industries..

Published in: Business

3D Printing: Its Economic and Technical Rational

  1. 1. MT5009ANALYZING HI-TECHNOLOGY OPPORTUNITIES Chew Kuan K k Cl Ch K Kok, Clement          (A0076995E) Espiritu Maricris Tolentino (A0076910E) Le Quang Dung (A0077075Y) Myo Kyaw Myo Kyaw Thu (A0013741U) Wong Yong Jin, Melvin               (A0076844U) 1
  2. 2. 2D printing 3D images?No color you like? Dented bumper? 2
  3. 3. Lets watch a video … 3
  4. 4. 4
  5. 5.  Introduction to 3D Printing d i 3 i i Technology Paradigm Value Propositions Value Propositions Current 3D Printing Technologies Cost and Performance Cost and Performance Comparison of 3D Printing Technologies Why 3D Printing Will Get Better Why 3D Printing Will Get Better Potentials for Improvement – Technology Roadmap Entrepreneurial Opportunities – Opportunities of Applications  Potential New Businesses 3D Printer Market at a Glance Conclusion 5
  6. 6.  3D printing is a form of additive manufacturing in which components are f b i fabricated i an additive f hi d in ddi i fashion by adding successive layers of material together 3D Printing 3D Printing = Additive Manufacturing Additive Manufacturing 6
  7. 7. Conventional Manufacturing  3D Printing Technology Technology• Mass‐production • Allow customization and on‐demand production• Require tools to produce  • Directly manufacture from  p parts (hardware driven) ( ) CAD model (software driven) ( )• Subtractive manufacturing • Additive manufacturing 7
  8. 8.  Fabrication on demand  Shorter product development time due to rapid prototyping Timberland prototype  Less reliance on logistics Cost : $1200 $35 Mass customisation Time required :1 week 90 mins  Caters to each individual’s wants and needs instead of mass production and consumption 8
  9. 9.  Opens up new  possibilities in design ibili i i d i  Complex geometries  Eliminate constraints of  conventional  conventional manufacturing  processes  Customised geometry and geometry and  parts  Avoids assembly issues assembly issues 9
  10. 10.  Cost‐efficient in producing parts with complex  ff d h l geometries and reduces waste €770 €380 Material Subtracted by Machining to Produce Feature/Part Material Subtracted by Machining to Produce Feature/Part Material Added by 3D Printing to Produce Feature/PartSource: Dr Hopkinson, Loughborough University 10
  11. 11.  Lowers barriers to entry for new businesses f  otal cost of production To Cost of conventionally  manufactured parts p ng ost of toolin Cost of part produced by  Cost of part produced by Co 3D Printing Break even  Break‐even Production  ProductionSource: Terry Wohler’s Report 2006 volume volume Illustration showing the total cost of production using conventional manufacturing and additive fabrication 11
  12. 12.  Promotes Innovation  Communicate design ideas  better through physical  models  Allows user‐centered  innovation to take place i ti t t k l ‐ Democratizing Innovation 12
  13. 13. Product Company Improvements ICON Aircraft + Gained two to three weeks on the schedule + Saved $2,000  + Saved $2 000 per part for tooling Autodesk University Method  Cost Estimate  Time Estimate  Machining  $900,00 9 months FDM (3D Printing)  ( g) $25,000 1.5 months Savings  $875,000  7.5 months (97%)   (83%)  Akaishi (Shizuoka, Japan) Method  Cost Estimate  Time Estimate  Traditional  JPY 37,500 10 days Prototyping  FDM Prototyping  JPY  10,000 1 day (3D Printing)  Savings  $27,500  9 days (73%)   (90%)  13
  14. 14. Stereolithography (SLA) Process using  photosensitive  photosensitive resins cured by a  laser that traces the  parts cross sectional  geometry layer by  layer.  14
  15. 15. Selective Laser Sintering (SLS) Process using a CO2  laser to sinter or  laser to sinter or fuse a powder  material. The laser  traces the parts  cross sectional  geometry layer by  layer.  15
  16. 16. Improvement in Components (SLA/SLS) Laser system › Improvement in speed of  curing/fusing process. curing/fusing process. › Higher intensity of the laser. › Smaller laser beam spot size. › D li i Decline in cost of laser  t fl technology. Scanning system › Improvement  in optical scanning  system (Digital Mirror System). › Improvement in path scanning  p p g algorithm. 16
  17. 17. Three‐Dimensional Printing (3DP)Introduction: Ink‐jet based process that prints  the parts cross sectional geometry  on layers of powder spread on top  of each other.Improvement in components: Inkjet print heads › Improvement in the droplet Improvement in the droplet  formation chamber. › Multiple nozzles to enable multi‐ material deposition. p 17
  18. 18. Fused Deposition Modeling (FDM)Introduction: Process using molten plastics or  g p wax extruded by a nozzle that  traces the parts cross sectional  g geometry layer by layer.  y y y yImprovement in components: Extrusion nozzle: › Improvement in size of the tip › Improvement in feed rate of  material 18
  19. 19. Source: Dr Hopkinson, Loughborough UniversityIllustration showing the break-even cost analysis of a small but complicated part 19
  20. 20. 43210 SLA SLS FDM 3DP Best for making  Best for direct  Best for functional  Best to produce  small lots of  manufacture of  testing, Rapid  fine feature details  complex, durable,  structural  tooling,  like hearing aid  hard‐to‐ components; Direct  p ; Prototyping, high  yp g, g and jewelry dj l manufacture parts metal coasting heat applications 20
  21. 21.  Laser system Laser system Scanning system Print head Print head Extrusion nozzle Materials: Emergence of more types of material Materials: Emergence of more types of material  which can be used. Application of  Nanotechnology. gy 3D CAD software: Improvement in speed,  accuracy and user interface. 21
  22. 22.  Technology improvements lead to cost reduction of components and material. Open source community: Shared knowledge and experiences (e.g. RepRap printers). As 3D Printing is getting better, demand for 3D g g g printing application increases significantly. “Increase in demand will lead to reductions in cost and i t d improvements i performance” ‐ t in f ” Christensen’s theory of disruptive innovation. High end vs Low end High‐end vs. Low‐end. 22
  23. 23. 23
  24. 24.  Opportunities of Applications  Potential New Businesses 24
  25. 25. “Design & Use” instead of “Buy & Use” 25
  26. 26. Prosthetics Dental solutionArtificial bone Limb Printing Body Parts P i ti g B d Pa t Replicate human anatomy easily 26
  27. 27. 1Kg = $3000 Fuel/ yr COST SAVINGA380 landing-gear section Titanium extraction Save Energy 25X* Source: www.airbus.com 27
  28. 28. Wind Tunnel TestingEnhance Innovation & Creativity 28
  29. 29. Imagination Creation DIY 29
  30. 30.  US Military has projects to make spare parts for  Military equipments for in‐battle repairs Mili i f i b l i Time saved 30
  31. 31.  Artist creates a design but not the actual piece Some form of Arts will be democratized if not all M Museum, Belgium 31
  32. 32. I want an  iPad cover  Printing shops (Fab Lab) like yours,  but I like it  but I like it Printer Leasing thicker, and  3D‐Printing solutions for self‐ pink  service customer kiosks service customer kiosks On‐line printing services 32
  33. 33.  Self‐help books  3D software learning institutes  Web‐based trainings Website to showcase the  model files (like flickr) model files (like flickr) Website where we can buy  and sell 3D‐model files (like  getty images, iTunes) 33
  34. 34.  Computers  More powerful computers   Higher resolution graphics  Faster data transferring techniques [e.g USB3.0, HDMI, etc… ??] 3D CAD software 3 f  3D printer‐centric solid modeling software   Easy to use interface  Incorporated analysis software (e.g FEA, etc…) d l f ( ) Lasers I Improvement in lasers used to “cure” the materials quicker ti l dt “ ” th t i l i k Material I Improved and new materials to cater the needs of 3D printers d d t i l t t th d f 3D i t (e.g Nano‐materials for better surface finish and strength) 34
  35. 35. 3D Printer Manufacturers 3D Printer Users 35
  36. 36. Figure 1: Growth of 3D-Printing industry Figure 2: Countries that have adopted the 3D-printing technology *in millions of dollars. *cumulative systems installed by country through the end of 2008 2009 and 2010 are forecast services p oducts productsSource: Terry Wohler Report 2010 36
  37. 37.  Price › $ 10,000 ‐ $500,000 Range › Low end machines with limited applicable materials  › Volume Vs Price (chicken and egg problem) Current Design Methodologies › Heavily invested in existing technologies and tools › Most design software are developed based on existing manufacturing  technologies h l i › Design Engineers / Designers are so used to with the existing  manufacturing  technologies / constraints. › Need to Un‐learn and Re‐Learn Need to Un learn and Re Learn Still lack of common Industrial Standards for 3D printing  technologies › Creates less confident on the technology by potential users 37
  38. 38.  What’s next for 3D‐printers?  Success of the 3D printers lies on: › Further improvements in supporting technologies and  components › Reduction in cost of 3D printers and consumables › C Consolidation and creating standards lid ti d ti t d d › Innovative and feasible business models Key to manufacturing will change from Economies  y g g of Scale to Economies of Knowledge Mass production to mass customized products Greener production/consumption Good ideas can be shared even more rapidly with  3D printing 3D i ti Barriers to entry for new businesses will be lower 38
  39. 39. Is 3D printingWhat would we going to disrupt need the existing gmanufacturers f t technologies for if there ismachine that can print a machine What will happen to the Will everybody ill b dsupply chain of own 3D printers the one daymanufacturing f industry 39
  40. 40. … closing video. 40
  41. 41. 1. ADVANCES IN RAPID PROTOTYPING D18E © 2008 Frost & Sullivan2. 3D Printer Benchmark: North American Edition, T. A. Grimm & Associates, Inc., June 20103. World Rapid Prototyping Equipment Markets N191‐30, © 2007 Frost & Sullivan4. EMERGING INDUSTRIAL MANUFACTURING TECHNOLOGY‐‐ RAPID PROTOTYPING D273© 2004 Frost & Sullivan5. FACTORY@HOMETHE EMERGING ECONOMY OF PERSONAL MANUFACTURING, OVERVIEW AND RECOMMENDATIONSA (HOD LIPSON, Cornell University MELBA KURMAN, Triple Helix innovation), report commissioned by the US Office of Science and Technology Policy, December 20106. The Wholer Report 2003, Terry Wholer Copyright 20037. The Wholer Report 2006, Terry The Wholer Report 2006, Terry Wholer Copyright 20068. The Wholer Report 2010, Terry Wholer Copyright 20109. Roadmap for Additive Manufacturing, Identifying the Future of Freeform Processing, The University of Texas at Austin Laboratory for Freeform Fabrication Advanced Manufacturing Center, Copyright 200910. Worldwide Trends in Additive Manufacturing, Terry Wohlers, RapidTech 2009: US-TURKEY Workshop on Rapid Technologies11. “The impact on industrial design by the development of three‐dimensional printing technology from a technical perspective”,  “Th i t i d t i l d i b th d l t f th di i l i ti t h l f t h i l ti ” Xing Liu, Xiaojiang Zhou, Hangzhou Dianzi University, Copyright 201012. Fused Deposition Modeling  http://www.time‐compression.com/articles/html/fused_deposition.html13. 3D printing technique applied to rapid casting by Elena Bassoli and Andrea Gatto Department of Mechanical and Civil Engineering, University of Modena and Reggio Emilia, Modena, Italy14. Direct Digital Manufacturing: Advantages & Consideration By Scott Crump, CEO, Stratasys, Inc.15. Three Dimensional Printing by Professor Emanuel Sachs, Mechanical Engineering Department , MIT16. Additive Manufacturing for mass customization by Phil Reeves, Chris Tuck, Richard Hague , Additive Manufacturing Research Group Wolfson School of Mechanical and Manufacturing Engineering Loughborough University17. Fab@home. http://www.fabathome.org @ p // g18. Reprap. http://www.reprap.org19. Objet Technologies. http://www.objet.com 41