SlideShare a Scribd company logo
1 of 1
Min filtered
Max filtered
Input signal
Kernel
Nearest value output
Comparing
difference
max
min
3. output
1. Input
2. max/min
#Limitation: Only one edge in a Kernel window
Removing Depth Map Coding Distortion
by Using Post Filter Set
Norishige Fukushima*, Tomohiko Inoue, Yutaka Ishibashi
Graduate School of Engineering, Nagoya Institute of Technology
Introduction and Overview Experimental Results
Proposed Method
Various codec, JPEG, JPEG2000, JPEG-
LS, H.264/AVC, can encode depth map and
these codecs have coding distortion.
Objective of this paper is removing
distortions by using post filter set.
Problem and OverviewBackground
Median Filter
R-D curve of various image codecs
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
Box Filter
Binary Weighted Range Filter (BWRF)
Box Filter
BWRFInput
Profile
curve
position
Min-max Blur Remove Filter
Binary Weighted Range Filter
3D scene
2cm
8cm
Source
view
Virtual
views
RAW Image
RAW depth
map
RAW Image
Coded/filtered
depth map
comparecompare
Experimental Setup
Depth map and image captured
from Kinect. Depth maps are
coded by various codecs.
#Image is not compressed.
[1]K. Lai, L .Bo, X. Ren, and D. Fox, “A large-scale
hierarchical multi-view rgb-d object dataset.,” in
Proc. ICRA, pp. 1817–1824, May 2011.
[2] K.-J. Oh, A. Vetro, and Y.-S. Ho, “Depth coding
using a boundary reconstruction filter for 3-d video
systems,” IEEE Trans. CSVT, vol. 21, no. 3, pp. 350 –
359, Mar. 2011.
Trans
mission
Encode Decode
Post
filtering
View
synthesis
Depth
Map
Image
Median
Filter
Min-Max
Blur Remove
Filter
Weighted
Range Filter
Over quantization
is recovered
Boundary blur
is removed
Spike noise
is removed
Gaussian
Filter
Gaussian noise
is removed
Project site/Source code: http://nma.web.nitech.ac.jp/fukushima/research/depthmap_postfilter.html
Reference
Computational Time
15 ms
Intel Core i7 2.93GHz (4core HT)
Parallelization: SSE4, Intel TBB
Language:C++
IEEE International Conference on Multimedia & Expo (ICME), July 2013

More Related Content

Viewers also liked

ガイデットフィルタとその周辺
ガイデットフィルタとその周辺ガイデットフィルタとその周辺
ガイデットフィルタとその周辺
Norishige Fukushima
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門
Norishige Fukushima
 
OpenCVをAndroidで動かしてみた
OpenCVをAndroidで動かしてみたOpenCVをAndroidで動かしてみた
OpenCVをAndroidで動かしてみた
徹 上野山
 
複数台のKinectV2の使い方
複数台のKinectV2の使い方複数台のKinectV2の使い方
複数台のKinectV2の使い方
Norishige Fukushima
 

Viewers also liked (7)

Popcntによるハミング距離計算
Popcntによるハミング距離計算Popcntによるハミング距離計算
Popcntによるハミング距離計算
 
ガイデットフィルタとその周辺
ガイデットフィルタとその周辺ガイデットフィルタとその周辺
ガイデットフィルタとその周辺
 
組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門組み込み関数(intrinsic)によるSIMD入門
組み込み関数(intrinsic)によるSIMD入門
 
OpenCVをAndroidで動かしてみた
OpenCVをAndroidで動かしてみたOpenCVをAndroidで動かしてみた
OpenCVをAndroidで動かしてみた
 
マルチコアを用いた画像処理
マルチコアを用いた画像処理マルチコアを用いた画像処理
マルチコアを用いた画像処理
 
複数台のKinectV2の使い方
複数台のKinectV2の使い方複数台のKinectV2の使い方
複数台のKinectV2の使い方
 
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと画像処理ライブラリ OpenCV で 出来ること・出来ないこと
画像処理ライブラリ OpenCV で 出来ること・出来ないこと
 

More from Norishige Fukushima

More from Norishige Fukushima (6)

画像処理の高性能計算
画像処理の高性能計算画像処理の高性能計算
画像処理の高性能計算
 
計算スケジューリングの効果~もし,Halideがなかったら?~
計算スケジューリングの効果~もし,Halideがなかったら?~計算スケジューリングの効果~もし,Halideがなかったら?~
計算スケジューリングの効果~もし,Halideがなかったら?~
 
多チャンネルバイラテラルフィルタの高速化
多チャンネルバイラテラルフィルタの高速化多チャンネルバイラテラルフィルタの高速化
多チャンネルバイラテラルフィルタの高速化
 
計算機アーキテクチャを考慮した高能率画像処理プログラミング
計算機アーキテクチャを考慮した高能率画像処理プログラミング計算機アーキテクチャを考慮した高能率画像処理プログラミング
計算機アーキテクチャを考慮した高能率画像処理プログラミング
 
3次元計測とフィルタリング
3次元計測とフィルタリング3次元計測とフィルタリング
3次元計測とフィルタリング
 
デプスセンサとその応用
デプスセンサとその応用デプスセンサとその応用
デプスセンサとその応用
 

Recently uploaded

Recently uploaded (20)

FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
 
AI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří KarpíšekAI revolution and Salesforce, Jiří Karpíšek
AI revolution and Salesforce, Jiří Karpíšek
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. Startups
 
Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
 
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
Measures in SQL (a talk at SF Distributed Systems meetup, 2024-05-22)
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 Warsaw
 
Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024Enterprise Knowledge Graphs - Data Summit 2024
Enterprise Knowledge Graphs - Data Summit 2024
 
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptxWSO2CONMay2024OpenSourceConferenceDebrief.pptx
WSO2CONMay2024OpenSourceConferenceDebrief.pptx
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdfIntroduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
Introduction to FDO and How It works Applications _ Richard at FIDO Alliance.pdf
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - Questionnaire
 
ECS 2024 Teams Premium - Pretty Secure
ECS 2024   Teams Premium - Pretty SecureECS 2024   Teams Premium - Pretty Secure
ECS 2024 Teams Premium - Pretty Secure
 
AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101AI presentation and introduction - Retrieval Augmented Generation RAG 101
AI presentation and introduction - Retrieval Augmented Generation RAG 101
 
Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
The Metaverse: Are We There Yet?
The  Metaverse:    Are   We  There  Yet?The  Metaverse:    Are   We  There  Yet?
The Metaverse: Are We There Yet?
 
Designing for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at ComcastDesigning for Hardware Accessibility at Comcast
Designing for Hardware Accessibility at Comcast
 

Removing depth map coding distortion by using post filter set

  • 1. Min filtered Max filtered Input signal Kernel Nearest value output Comparing difference max min 3. output 1. Input 2. max/min #Limitation: Only one edge in a Kernel window Removing Depth Map Coding Distortion by Using Post Filter Set Norishige Fukushima*, Tomohiko Inoue, Yutaka Ishibashi Graduate School of Engineering, Nagoya Institute of Technology Introduction and Overview Experimental Results Proposed Method Various codec, JPEG, JPEG2000, JPEG- LS, H.264/AVC, can encode depth map and these codecs have coding distortion. Objective of this paper is removing distortions by using post filter set. Problem and OverviewBackground Median Filter R-D curve of various image codecs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 Box Filter Binary Weighted Range Filter (BWRF) Box Filter BWRFInput Profile curve position Min-max Blur Remove Filter Binary Weighted Range Filter 3D scene 2cm 8cm Source view Virtual views RAW Image RAW depth map RAW Image Coded/filtered depth map comparecompare Experimental Setup Depth map and image captured from Kinect. Depth maps are coded by various codecs. #Image is not compressed. [1]K. Lai, L .Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view rgb-d object dataset.,” in Proc. ICRA, pp. 1817–1824, May 2011. [2] K.-J. Oh, A. Vetro, and Y.-S. Ho, “Depth coding using a boundary reconstruction filter for 3-d video systems,” IEEE Trans. CSVT, vol. 21, no. 3, pp. 350 – 359, Mar. 2011. Trans mission Encode Decode Post filtering View synthesis Depth Map Image Median Filter Min-Max Blur Remove Filter Weighted Range Filter Over quantization is recovered Boundary blur is removed Spike noise is removed Gaussian Filter Gaussian noise is removed Project site/Source code: http://nma.web.nitech.ac.jp/fukushima/research/depthmap_postfilter.html Reference Computational Time 15 ms Intel Core i7 2.93GHz (4core HT) Parallelization: SSE4, Intel TBB Language:C++ IEEE International Conference on Multimedia & Expo (ICME), July 2013