Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Helping online communities enrich folksonomies


Published on

This paper presents our approach to collaborative and semiautomated
semantic structuring of folksonomies. Tags freely provided by users of online communities are not semantically
linked, and this hinders signi cantly the potentials for browsing and exploring these data. We propose a sociotechnical
system combining automatic handlings of tags, using state of the art algorithm, and user friendly interfaces designed after a careful analysis of the usage of our target
communities. Much like folksonomies, our socio-technical system lets each user maintain his own view while still bene
ting from others contributions. As a complement to similar approaches, our approach supports conflicting point of
views all along the life-cycle of semantically enriched folksonomies.

Published in: Technology

Helping online communities enrich folksonomies

  1. 1. 1<br />Helping online communities to semantically enrich folksonomies<br />Freddy Limpens, Fabien Gandon<br />Edelweiss, INRIA Sophia Antipolis<br />{freddy.limpens,fabien.gandon}<br />Michel Buffa<br />Kewi, I3S, Université Nice-Sophia Antipolis<br />Edelweiss<br />WebScience 2010, Raleigh, NC, USA, 26-27 april 2010<br />
  2. 2. 2<br />Social tagging for bookmarking<br /><br />
  3. 3. 3<br />… and the resulting <br />FOLKS - ONOMIES<br />
  4. 4. 4<br />Spelling variations of tags<br />newyork = new_york = nyc <br />
  5. 5. 5<br />Amibiguity of tags<br />.. in<br />France ?<br />… or in<br /> Texas ?<br />
  6. 6. 6<br />How to turn<br />folksonomies ...<br />?<br />Energy<br />pollutant<br />related<br />related<br />pollution<br />...into comprehensible<br /> topic structures ?<br />has narrower<br />Soil pollutions<br />
  7. 7. 7<br />… by collecting<br />all user's <br />expertise<br />into the <br />process<br />
  8. 8. 8<br />Our approach<br /><ul><li>Integrate usage-analysis for a tailored solution
  9. 9. Supporting diverging points of view
  10. 10. Automaticprocessings</li></ul>+<br /><ul><li>Human expertise through user-friendly interfaces</li></li></ul><li>9<br />Concrete scenario <br />Archivists<br />centralize + tag<br />Experts<br />produce docs <br />+ tag<br />Public audience<br />read + tag<br />
  11. 11. 10<br />Supporting diverging points of view<br />skos:related<br />pollution<br />car<br />
  12. 12. 11<br />Supporting diverging points of view<br />skos:related<br />pollution<br />car<br />disagrees<br />agrees<br />John<br />Paul<br />
  13. 13. 12<br />Supporting diverging points of view<br />tagSemanticStatement (named graph)<br />skos:related<br />pollution<br />car<br />hasApproved<br />hasRejected<br />Paul<br />John<br />
  14. 14. Folksonomy<br />enrichment <br />life-cycle<br />Flat folksonomy<br />User-centric<br />structuring<br />Automatic processing<br />Detectconflicts<br />ADDING TAGS<br />Global<br />structuring<br />Structuredfolksonomy<br />
  15. 15. 14<br />pollution<br />pollution<br />pollution<br />pollution<br />pollution<br />Soil pollutions<br />pollution<br />pollutant<br />1. Comparing Tag labels with string edit distances<br />
  16. 16. 15<br />1. Comparing Tag labels with string edit distances<br /><ul><li>Evaluation of 30 edit distances
  17. 17. Combining the best metrics
  18. 18. Needs complement !</li></li></ul><li>16<br />2. Analyzing the tri-partite structure of folksonomies<br />Association via:<br /><ul><li> Users
  19. 19. tags</li></ul>Fig. Markines et al. (2009)<br />
  20. 20. 17<br />Result: automatically suggested semantics<br />Environment<br />related<br />pollutant<br />Energy<br />related<br />related<br />pollution<br />has narrower<br />Soil pollutions<br />
  21. 21. Folksonomy<br />enrichment <br />life-cycle<br />Flat folksonomy<br />User-centric<br />structuring<br />Automatic processing<br />Detectconflicts<br />ADDING TAGS<br />Global<br />structuring<br />Structuredfolksonomy<br />
  22. 22. 19<br />Embedding structuring tasks within everyday activity (searching e.g)<br />
  23. 23. 20<br />Embedding structuring tasks within everyday activity (searching e.g)<br />
  24. 24. 21<br />Capturing user's point of view<br />
  25. 25. Folksonomy<br />enrichment <br />life-cycle<br />Flat folksonomy<br />User-centric<br />structuring<br />Automatic processing<br />Detectconflicts<br />ADDING TAGS<br />Global<br />structuring<br />Structuredfolksonomy<br />
  26. 26. 23<br />Conflict detection<br />narrower<br />pollution<br />environment<br />broader<br />
  27. 27. 24<br />Conflict detection<br />narrower<br />pollution<br />environment<br />broader<br />Using rules e.g:<br />IFnum(narrower)/num(broader) ≥ c<br />THENnarrowerwins<br />ELSE 'more generic' wins<br />
  28. 28. 25<br />Conflict detection<br />narrower<br />pollution<br />environment<br />related<br />broader<br />related<br />more generic<br />more generic<br />narrower<br />broader<br />
  29. 29. Folksonomy<br />enrichment <br />life-cycle<br />Flat folksonomy<br />User-centric<br />structuring<br />Automatic processing<br />Detectconflicts<br />ADDING TAGS<br />Global<br />structuring<br />Structuredfolksonomy<br />
  30. 30. 27<br />Global structuring by Referent<br />related<br />pollution<br />environment<br />hasApproved<br />ReferentUser<br />
  31. 31. Folksonomy<br />enrichment <br />life-cycle<br />Flat folksonomy<br />User-centric<br />structuring<br />Automatic processing<br />Detectconflicts<br />ADDING TAGS<br />Global<br />structuring<br />Structuredfolksonomy<br />
  32. 32. 29<br />Take away message<br /> (conclusion)<br />
  33. 33. 30<br />Help communities <br />structure their tags<br />What we do :<br />
  34. 34. 31<br />Our contributions:<br /><ul><li>Usagesanalysis
  35. 35. Automatic processing of tags
  36. 36. Tag structuring embedded in every-day tools
  37. 37. Supporting multi-points of view</li></li></ul><li>32<br />Implementation & tests<br /><ul><li>ADEME dataset (~10000 tags)
  38. 38. Tag server
  39. 39. Tag searching interface</li></li></ul><li>33<br />Perspectives<br /><ul><li>More automaticmethods
  40. 40. More ontologicalresources
  41. 41. Other interfaces (tagging, global structuring)
  42. 42. Test + Evaluation @ Ademe & Orange Labs</li></li></ul><li>34<br />Thank you !<br /><br /><br /><br />