Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
As machine learning evolves from experimentation to serving production workloads, so does the need to effectively manage the end-to-end training and production workflow including model management, versioning, and serving. TFX together with Apache Beam and Apache Flink unlocks new and exciting use cases. Clemens Mewald offers an overview of TensorFlow Extended (TFX), the end-to-end machine learning platform for TensorFlow that powers products across all of Alphabet. Many TFX components rely on the Beam SDK to define portable data processing workflows. This talk explores how Apache Flink runner for Apache Beam Python enables TFX pipelines for production ready machine learning workloads.
Login to see the comments