MEMS - based Inertial Navigation Systems onboard Balloons

1,829 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,829
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
50
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

MEMS - based Inertial Navigation Systems onboard Balloons

  1. 1. MEMS - based Inertial Navigation Systems onboard Balloons Giovanni B. Palmerini - Emanuele Medaglia Maria Cristina Oliva - Paolo Montefusco 1st Workshop on Science and Technology through Long Duration Balloons, INAF-Rome, June 3-4, 2008
  2. 2. <ul><li>Rexus - Bexus is a bilateral German-Swedish cooperation to offer students experiment opportunities using sounding rocket and stratospheric balloon flights from Esrange in Northern Sweden. </li></ul><ul><li>Each flight will carry a payload consisting solely of student experiment. </li></ul><ul><li>An announcement of opportunity was made in November 2007 for flight campaigns in 2008 and 2009. </li></ul>
  3. 3. <ul><li>- Esrange Space Center is located in northern Sweden, 45 km from the town of Kiruna at 67 o N, 21 o E </li></ul><ul><li>- Esrange has been the site of many campaigns, involving different types of balloons (more than 500 launches) </li></ul>
  4. 4. BEXUS experiments are lifted to an altitude of 20-35 km for a flight duration of 2-5 hours, depending on total experiment mass (40-100 kg). The balloon has a volume of 12000 m 3 , and an inflated diameter of 14m
  5. 5. <ul><li>Flight duration : 2-5 hours </li></ul><ul><li>Altitude : 25-35 Km </li></ul><ul><li>Acceleration : -10g vertically and ±5g horizontally </li></ul><ul><li>Landing velocity : 8 m/s (approx.) </li></ul><ul><li>Thermal environment : down to -90 °C </li></ul>
  6. 6. Our entry for BEXUS payload selection is LOWCOINS, for LOW COst Inertial Navigation System , an experiment based on the recently available MEMS (Micro Electro Mechanical Systems) technology The advantages of MEMS sensors: – Lightweight – Volume and Power minimal requirements – Low cost – Availability – Ruggedness – Reliability Gyros Accelerometers Resolution of measurements Double integration G-loop Attitude determination <ul><li>State: </li></ul><ul><li>Position </li></ul><ul><li>Velocity </li></ul>
  7. 7. <ul><li>To learn </li></ul><ul><li>To investigate the feasibility of a MEMS-based INS in a slow dynamic environment </li></ul><ul><li>To estimate errors derived by using COTS components </li></ul><ul><li>To compare results with more precise navigation system (GPS) provided by Bexus (EBASS bay) </li></ul><ul><li>To provide attitude data for the gondola </li></ul><ul><li>To verify the possibility to offer an inexpensive backup in case of main system unavailability </li></ul>
  8. 8. <ul><li>LOWCOINS experiment is an INS based on a strapdown design </li></ul><ul><li>Inertial measurements are gained by MEMS-based motion sensing devices </li></ul><ul><li>A Microchip PIC processor will collect measurements, compute an approximate solution, provide data to balloon housekeeping for downlinking to ground and store data into a flash memory </li></ul><ul><li>Different sensors (pressure, magnetic) will be added to improve the inertial solution </li></ul>
  9. 9. Magnetic Field Sensor Pressure Sensor Attitude Determination Measurements Reduction Navigation Computer Double integration Position & Velocity Temperature Sensor Gyros Accelerometers
  10. 10. Magnetic Field Sensor Pressure Sensor Attitude Determination Measurements Reduction Navigation Computer Double integration Position & Velocity Temperature Sensor Gyros Accelerometers
  11. 11. Gyros Accelerometers Magnetic Field Sensor Pressure Sensor Attitude Determination Measurements Reduction Navigation Computer Double integration Position & Velocity Temperature Sensor
  12. 12. <ul><li>Comparison between on-board data (computed with limited resources, i.e. at a limited data rate) and exhaustive on ground processing (complete data set + calibration for on-the-run drift) </li></ul><ul><li>Test of the solution validity with re-alignment (from “official” data performed at various times and mission phases) </li></ul><ul><li>Behavior of the error equation for the INS obtained considering the “official” telemetry data – GPS benchmark - as the true solution and linearizing about (i.e. check the performances of MEMS sensors on different time-scales) </li></ul><ul><li>Acquisition of hands-on experience on sensors’ errors and calibration </li></ul>
  13. 13. <ul><li>Analog Devices </li></ul><ul><li>ADIS16355 </li></ul><ul><li>High precision three-axes inertial sensor </li></ul><ul><li>± 10 g , ± 300 °/s range </li></ul><ul><li>14 bit resolution </li></ul><ul><li>Factory calibrated sensitivity, bias and alignement </li></ul><ul><li>-40 °C to +85 °C </li></ul><ul><li>SPI compatible serial interface </li></ul>
  14. 14. <ul><li>Speake & Co Llanfapley </li></ul><ul><li>FGM-2 FGM-1 </li></ul><ul><li>High sensitivity 2-axis and 1-axis magnetic field sensors </li></ul><ul><li>+5 volt operations </li></ul><ul><li>The output is a robust 5 volt rectangular pulse whose period is directly proportional to the field strength </li></ul>
  15. 15. <ul><li>Honeywell </li></ul><ul><li>ASDX015A24R </li></ul><ul><li>Pressure ranges from 0 to 15 psi </li></ul><ul><li>5.0 Vdc supply </li></ul><ul><li>High level output (4.0 Vdc span) </li></ul><ul><li>Quantization step of 3 mV </li></ul><ul><li>Wide compensated temperature range 0 °C to 85 °C </li></ul>
  16. 16. <ul><li>Microcontroller specification: </li></ul><ul><li>Microchip PIC 18F2620 </li></ul><ul><ul><li>28 pin microcontroller </li></ul></ul><ul><ul><li>Up to 40 MHz clock </li></ul></ul><ul><ul><li>SPI & I 2 C interface </li></ul></ul><ul><ul><li>10 channel 10 bit ADC </li></ul></ul><ul><ul><li>64 Kb program flash memory </li></ul></ul><ul><li>Flash memory specification: </li></ul><ul><li>ATMEL AT45DB161D </li></ul><ul><ul><li>8 pin SOIC serial flash memory </li></ul></ul><ul><ul><li>16 Mbit </li></ul></ul><ul><ul><li>3 wires SPI interface </li></ul></ul>
  17. 17. To PC (Service Mode) E-LINK TM/TC interface Voltage Regulator SPI bus 3.3 V & 5 V To components HEATER ANALOG DEVICES ADIS16355 IMU FGM-2 FGM-1 Magnetic Field Sensors PIC microcontroller RS 232 interface Pressure Sensor battery pack Flash Memory 1 Flash Memory 2 Flash Memory 3 Flash Memory 4 Temperature Sensor
  18. 18. <ul><li>64 Mbit memory allows for up to 6.4 hours of data recording </li></ul>Measurement Resolution (bit) Memory occupation (bytes per sample) Sampling Frequency (Hz) 3 accelerations 14 2 20 3 angular rates 14 2 20 3 magnetic field components 16 2 20 1 temperature 12 2 1 1 pressure 10 2 1 TOTAL 364 bytes/s 2912 bps
  19. 19. G. Palmerini, E.Medaglia, P.Montefusco, M.C.Oliva “ MEMS-based Inertial Navigation Systems onboard Balloons” 1st Workshop on Science and Technology through Long Duration Balloons, Rome, June 3-4, 2008 LOWCOINS board - sensor part layout April 2008
  20. 20. G. Palmerini, E.Medaglia, P.Montefusco, M.C.Oliva “ MEMS-based Inertial Navigation Systems onboard Balloons” 1st Workshop on Science and Technology through Long Duration Balloons, Rome, June 3-4, 2008 LOWCOINS board Power and heating portion layout May 2008
  21. 22. Past BEXUS flights indicate possible problems for COTS components The combination of undetermined temperature range and flight duration led to consider conservative solutions
  22. 23. <ul><li>Requirement: Electronics should be kept above ~ 0 °C </li></ul><ul><li>Step 1 - Theory </li></ul><ul><li>Hypotheses </li></ul><ul><ul><li>Worst case external temperature: -90 °C </li></ul></ul><ul><ul><li>Isothermal conditions inside the box </li></ul></ul><ul><ul><li>Heat transfer by conduction through housing walls </li></ul></ul><ul><ul><li>Insulation panels: foam 3 cm thickness with k=0.03 Wm -2 K -1 </li></ul></ul><ul><li>Findings </li></ul><ul><ul><li>10 W are required to keep a temperature difference of ~ 100 °C </li></ul></ul>
  23. 24. <ul><li>Experiment insulation box: </li></ul><ul><ul><li>20x20x15 cm </li></ul></ul><ul><li>Foam panels with aluminium skins: </li></ul><ul><ul><li>3 cm thickness </li></ul></ul><ul><ul><li>30 Kg/m 3 density </li></ul></ul>The microprocessor switches the heater on whenever the temperature T0 (middle of the component side) falls below 15°C and turns it off above 20°C.
  24. 25. Test conduced in presence of free convection! Test in thermal-vacuum chamber needed to define thermal control power requirements
  25. 26. <ul><li>Even with a really conservative contingency the power requested by sensors and data processing is limited </li></ul><ul><li>Thermal conditioning will be the driver </li></ul>  (mA) @ 5V Analog Devices ADIS16355 57 Pressure sensor - ASDX015A24R 6 Magnetometers - FGM 1 + FGM 2 24 PIC 18F2620 2 ATMEL AT45DB161D 12 ICL 232 10 Contingency 50 TOTAL 150
  26. 27. <ul><li>10 W for thermal control </li></ul><ul><ul><li>1.5 W experiment self heat </li></ul></ul><ul><ul><li>8.5 heater </li></ul></ul><ul><li>3 LSH20 battery (10.8 V) </li></ul><ul><ul><li>@ 1 A discharge current </li></ul></ul><ul><ul><li>Effective capacity: 7 Ah </li></ul></ul><ul><ul><li>Allows for 7 hours of operation (heater always on!) </li></ul></ul><ul><ul><li>Reliable (ESA suggested part) </li></ul></ul>
  27. 28.   Mass (grams) Analog Devices ADIS16355 16 Pressure sensor - ASDX015A24R 2 Magnetometers - FGM 1 + FGM 2 5 PIC 18F2620 6 ATMEL AT45DB161D 1 LSH 20 battery pack (3 cell) 300 Housing (aluminium) 2000 (20x20x15 cm - 0.2 cm thickness) Contingency 200 TOTAL 2500
  28. 29. <ul><li>Constrained by the uncertainties on the actual take-off time and on the flight duration: </li></ul><ul><li>Experiment powers up plugging a connector with shorted pins which acts as an outside-located switch </li></ul><ul><li>The unit goes in sleep mode during launch preparation phase </li></ul><ul><li>The unit wakes up and starts recording upon telecommand reception </li></ul><ul><li>The unit goes in sleep mode when memory is full </li></ul>
  29. 30. <ul><li>Northrop Grumman Italia (NGI) kindly agreed to support LOWCOINS activities, providing help in different fields </li></ul><ul><li>The company, in a cooperation scheme which allowed for the students to have their stage at NGI, granted: </li></ul><ul><ul><li>Support for mechanical and thermal interface design and manufacture </li></ul></ul><ul><ul><li>Advice for electrical & software design </li></ul></ul><ul><ul><li>Facilities for experiment hardware building & testing </li></ul></ul><ul><ul><ul><li>Soldering for SMT components </li></ul></ul></ul><ul><ul><ul><li>Thermal chamber </li></ul></ul></ul><ul><ul><ul><li>Vacuum & thermal-vacuum chamber </li></ul></ul></ul><ul><ul><ul><li>Vibe tests </li></ul></ul></ul><ul><ul><ul><li>Static calibration </li></ul></ul></ul><ul><ul><ul><li>Dynamic test campaign </li></ul></ul></ul>
  30. 31. <ul><li>Paolo : </li></ul><ul><ul><li>Electronic design </li></ul></ul><ul><ul><li>Onboard software development </li></ul></ul><ul><ul><li>Power Interface </li></ul></ul><ul><ul><li>Mechanical interface </li></ul></ul><ul><ul><li>Post-processing software for attitude and position determination </li></ul></ul><ul><li>Maria Cristina : </li></ul><ul><ul><li>Ground station software developer for TM/TC handling </li></ul></ul><ul><ul><li>Real-time computation </li></ul></ul><ul><ul><li>Mechanical design </li></ul></ul><ul><ul><li>CAD design </li></ul></ul><ul><ul><li>Webmaster </li></ul></ul><ul><ul><li>Post-processing software for attitude and position determination </li></ul></ul><ul><li>Emanuele : </li></ul><ul><ul><li>Thermal interface </li></ul></ul><ul><ul><li>Thermal and Structural analysis </li></ul></ul><ul><ul><li>Onboard computation </li></ul></ul><ul><ul><li>Post-processing software for attitude and position determination </li></ul></ul>
  31. 32. <ul><li>16 Nov 2007 - Announcement of opportunity for BEXUS 7 experiments </li></ul><ul><li>7 Jan 2008 - Deadline for applications </li></ul><ul><li>28 Jan 2008 - Announcement of short-listed proposals and invitations to workshop </li></ul><ul><li>5-6 Mar 2008 - Workshop at ESA-ESTEC in Noordwijk, The Netherlands </li></ul><ul><li>15 Mar 2008 - Announcement of final selection of the experiments for BEXUS 6 & 7 flight </li></ul><ul><li>21-25 Apr 2008 - Student Training Week and Preliminary Design Review (PDR) at Esrange in Kiruna, Sweden </li></ul><ul><li>20 June 2008 - Critical Design Review (CDR) </li></ul><ul><li>end Aug 2008 - Delivery of experiments to Esrange for Experiment Acceptance Review (EAR) </li></ul><ul><li>tbd Oct 2008 - BEXUS 7 Launch Campaign at Esrange </li></ul><ul><li>15 Jan 2009 - Submission of Experiment Reports to ESA   </li></ul>

×