Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Colin Paul Spears Carmichael, California Marjorie Bicknell - Johnson Santa Clara, California John J. Yan Electrical and Co...
Cell Division is Asymmetric   Parent & Daughter (Left)  vs. Parent-Daughters-Granddaughters
Asymmetric Cell Division: Binomial Identities for Age Analysis of Mortal vs. Immortal trees Applications of Fibonacci Numb...
 
Age  7  1  2  3  1  4  1  2  5  1  2  3  1  Stem   1  0  1  1  0  1  0  1  1  0  1  1  0 Gen  0  1  1  1  2  1  2  2  1  2...
Fibonacci Age and Generation Necklaces F 13   =  233  Parse 21
Fibonacci Age  and Generation  F 13   =  233  Parse F 11  = 89
MATLAB  Program <ul><li>Graphics display by processing number arrays in a loop for each cell parameter identifier, Age or ...
MATLAB  Program: Flow Diagram
Matlab Cylindrical Wrap, F 14  = 377 Generation and Age Parse 13 (F 7 )
Matlab Age  F 20  =  6765  Parse  F 10  (55)
Age Array F 20  = 6765  Parse 55 Dominant Parastichies:  8, 13, 21
Age  (HPF) Array F 23  = 28657  Parse  F 10 Dominant Parastichies: 13, 21, 34
Structure  of  F n  parse F m   <ul><li>Number of Nodes =  F n /L m  Length of Nodes = L m  = F m-1  + F m+1 </li></ul><ul...
Left-adjusted Fibonacci Tree (Zeckendorf Form)
Wythoff – Zeckendorf  Array
Classic Fibonacci Tree (Wythoff Form)
Classic Fibonacci Tree (Wythoff Form) renumbered
Wythoff Tree 1231 Motif with Wythoff Pairs N Age (HPF) Infinite Word Wythoff Pair  VPF Age (HPF) WP N-1 Renumbered
Classic Fibonacci Tree (Wythoff Form) renumbered with VPF Wythoff Pairs
<ul><li>The numbers bk have the nice property that any number N which can be represented by a sum of distinct Fibonacci nu...
Matlab Age (HPF)  F 13  = 233 Parse F 7  13-col Array
Matlab Generation (Z)  F 13  Parse F 7  13-col Array 2x3 and 3x3  Z-clusters
Matlab Age (HPF)  F 13  Parse F 7  13-col Array with 2x3 and 3x3  Z-clusters
Matlab Age (HPF)  F 13  Parse F 7  13-col Array with 2x3 and 3x3  Z-clusters and VPF Wythoff Pairs
 
 
 
 
 
 
 
Green, Paul B. Calculus-based biophysical paradigms for patterning in plants. Am. J. Botany 86:1059, 1999
AUXIN Transport by protein PIN Asymmetry: Science 312:383 and 858, May 12, 2006 Wisniewska et al; and Sieberer and Leyser
Upcoming SlideShare
Loading in …5
×

Algorithm - Fibonacci Phyllotaxis by Asymmetric Cell Division

1,975 views

Published on

Patras 0707 2008 actual presentation + lindenmeyer

Published in: Education, Technology

Algorithm - Fibonacci Phyllotaxis by Asymmetric Cell Division

  1. 1. Colin Paul Spears Carmichael, California Marjorie Bicknell - Johnson Santa Clara, California John J. Yan Electrical and Computer Engineering University of California at Davis FIBONACCI PHYLLOTAXIS BY ASYMMETRIC CELL DIVISION: ZECKENDORF AND WYTHOFF TREES
  2. 2. Cell Division is Asymmetric Parent & Daughter (Left) vs. Parent-Daughters-Granddaughters
  3. 3. Asymmetric Cell Division: Binomial Identities for Age Analysis of Mortal vs. Immortal trees Applications of Fibonacci Numbers 7:377-391, 1998
  4. 5. Age 7 1 2 3 1 4 1 2 5 1 2 3 1 Stem 1 0 1 1 0 1 0 1 1 0 1 1 0 Gen 0 1 1 1 2 1 2 2 1 2 2 2 3
  5. 6. Fibonacci Age and Generation Necklaces F 13 = 233 Parse 21
  6. 7. Fibonacci Age and Generation F 13 = 233 Parse F 11 = 89
  7. 8. MATLAB Program <ul><li>Graphics display by processing number arrays in a loop for each cell parameter identifier, Age or Generation </li></ul><ul><li>Rectangular display by parse Number </li></ul><ul><li>Spiral display by 2 x Pi /parse number with assignment of x = sin(t), y = cos(t), z = t. </li></ul><ul><li>Sequential symbol and color assignments to Age and Generation by default Matab choices. </li></ul>
  8. 9. MATLAB Program: Flow Diagram
  9. 10. Matlab Cylindrical Wrap, F 14 = 377 Generation and Age Parse 13 (F 7 )
  10. 11. Matlab Age F 20 = 6765 Parse F 10 (55)
  11. 12. Age Array F 20 = 6765 Parse 55 Dominant Parastichies: 8, 13, 21
  12. 13. Age (HPF) Array F 23 = 28657 Parse F 10 Dominant Parastichies: 13, 21, 34
  13. 14. Structure of F n parse F m <ul><li>Number of Nodes = F n /L m Length of Nodes = L m = F m-1 + F m+1 </li></ul><ul><li>Oldest cell in a node alternates left-right in descending age </li></ul><ul><li>Newborn 1s occur in L m-2 runs </li></ul><ul><li>Cells associate by Age </li></ul><ul><li>Generations cluster in regular relationship to age, with the early Age 1,2,3,1 Age motif </li></ul>
  14. 15. Left-adjusted Fibonacci Tree (Zeckendorf Form)
  15. 16. Wythoff – Zeckendorf Array
  16. 17. Classic Fibonacci Tree (Wythoff Form)
  17. 18. Classic Fibonacci Tree (Wythoff Form) renumbered
  18. 19. Wythoff Tree 1231 Motif with Wythoff Pairs N Age (HPF) Infinite Word Wythoff Pair VPF Age (HPF) WP N-1 Renumbered
  19. 20. Classic Fibonacci Tree (Wythoff Form) renumbered with VPF Wythoff Pairs
  20. 21. <ul><li>The numbers bk have the nice property that any number N which can be represented by a sum of distinct Fibonacci numbers containing 2 equals some bi [5, 6] and thus will number a cell containing a one. The column numbered Fn will contain cells which contain 1 and whose cell numbers are multiples of Fn, making ones appear in the columns labeled 2 and 5, for example. Consider odd subscripts: </li></ul><ul><li>F2k+1 – 1 = (F2k + F2k-2 + … + 21) + 8 + 3 + 1 = M + 8 + 3 + 1 </li></ul><ul><li>F2k+1 = M + 8 + 3 + 2 = bj where j = F2k-1 </li></ul><ul><li>F2k+1 + 1 = M + 8 + 3 + 2 + 1 = aw for some w </li></ul><ul><li>F2k+1 + 2 = M + 8 + 5 + 2 = bv for some v </li></ul><ul><li>F2k+1 + 5 = M + 13 + 3+ 2 = bv+1 </li></ul><ul><li>A similar argument follows for multiples of F2k+1: </li></ul><ul><li>2F2k+1 = F2k+1 + M + 8 + 3 + 2 </li></ul><ul><li>3F2k+1 = 2F2k+1 + M + 8 + 3 + 2 = F2k+2 + F2k-1 + M + 8 + 3 + 2 </li></ul><ul><li>4F2k+1 = F2k+1 + 3 F2k+1 = F2k+2 + F2k+1 + F2k-1 + M + 8 + 3 + 2 </li></ul><ul><li>Of course, F2k+1 must be large enough to enjoy a good run of 1s. For 13, ones remain in the right column through 11(F7) = 143, but 12(F7) = 156 ends in a 1 so 156 = aw for some w. </li></ul>
  21. 22. Matlab Age (HPF) F 13 = 233 Parse F 7 13-col Array
  22. 23. Matlab Generation (Z) F 13 Parse F 7 13-col Array 2x3 and 3x3 Z-clusters
  23. 24. Matlab Age (HPF) F 13 Parse F 7 13-col Array with 2x3 and 3x3 Z-clusters
  24. 25. Matlab Age (HPF) F 13 Parse F 7 13-col Array with 2x3 and 3x3 Z-clusters and VPF Wythoff Pairs
  25. 33. Green, Paul B. Calculus-based biophysical paradigms for patterning in plants. Am. J. Botany 86:1059, 1999
  26. 34. AUXIN Transport by protein PIN Asymmetry: Science 312:383 and 858, May 12, 2006 Wisniewska et al; and Sieberer and Leyser

×