Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Transformada de Fourier - Señales en forma trigonometrica y complejas

120 views

Published on

Procesamiento Digital de Señales

Published in: Education
  • Be the first to comment

  • Be the first to like this

Transformada de Fourier - Señales en forma trigonometrica y complejas

  1. 1. qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxc vbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmqwertyuiopasdfghjklzxc vbnmqwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiopasdfg hjklzxcvbnmrtyuiopasdfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnmqwert yuiopasdfghjklzxcvbnmqwertyuiopas Universidad Autónoma de Baja California Citec Valle de las Palmas Ingeniería en Electrónica Procesamiento Digital de Señales Reporte 2 Señal Diente de Sierra en función trigonométrica y compleja 15-Abril/2015 564 Marcos Marcos Fernando Paul Medina
  2. 2. t=0:0.001:4; a0=(3/2)*ones(1,length(t)); a1=(6/pi)*cos((pi)*t); plot(t,a0); hold on; grid; plot(t,a1); plot(t,xt,'r'); t=0:0.001:4; a0=(3/2)*ones(1,length(t)); a1=(6/pi)*cos((pi)*t); a3=((-2/pi)*cos((3*pi)*t)); plot(t,a0); hold on; grid; plot(t,a1); plot(t,a3); plot(t,xt,'r'); t=0:0.001:4; a0=(3/2)*ones(1,length(t)); a1=(6/pi)*cos((pi)*t); a3=((-2/pi)*cos((3*pi)*t)); a5=((6/(5*pi))*cos((5*pi)*t)); a7=((-6/(7*pi))*cos((7*pi)*t)); a9=((6/(9*pi))*cos((9*pi)*t)); a11=((-6/(11*pi))*cos((11*pi)*t)); a13=((6/(13*pi))*cos((13*pi)*t)); a15=((-6/(15*pi))*cos((15*pi)*t)); 0 0.5 1 1.5 2 2.5 3 3.5 4 -2 -1 0 1 2 3 4 0 0.5 1 1.5 2 2.5 3 3.5 4 -2 -1 0 1 2 3 4
  3. 3. xt=a0+a1+a3+a5+a7+a9+a11+a13+a15; plot(t,a0); hold on; grid; plot(t,a1); plot(t,a3); plot(t,a5); plot(t,a7); plot(t,a9); plot(t,a11); plot(t,a13); plot(t,a15); plot(t,xt,'r'); 0 0.5 1 1.5 2 2.5 3 3.5 4 -2 -1 0 1 2 3 4
  4. 4. Solución compleja 𝑥( 𝑡) = ∑ 𝑗 5 2𝜋𝑛 −∞ 𝑛=∞ 𝑒𝑗𝑛𝜔0 𝑡
  5. 5. t=0:0.001:4; a0=(5/2)*ones(1,length(t)); a1=(-5/(1*pi))*sin(1*pi*t); a2=(-5/(2*pi))*sin((2*pi*t)); xt=a0+a1+a2; hold on; grid; plot(t,a0); plot(t,a1); plot(t,a2); plot(t,xt,'r'); t=0:0.001:4; a0=(5/2)*ones(1,length(t)); a1=(-5/(1*pi))*sin(1*pi*t); a2=(-5/(2*pi))*sin((2*pi*t)); a3=(-5/(3*pi))*sin((3*pi*t)); a4=(-5/(4*pi))*sin((4*pi*t)); a5=(-5/(5*pi))*sin((5*pi*t)); a6=(-5/(6*pi))*sin((6*pi*t)); a7=(-5/(7*pi))*sin((7*pi*t)); a8=(-5/(8*pi))*sin((8*pi*t)); a9=(-5/(9*pi))*sin((9*pi*t)); a10=(-5/(10*pi))*sin((10*pi*t)); xt=a0+a1+a2+a3+a4+a5+a6+a7+a8+a9+a10; hold on; grid; plot(t,a0); plot(t,a1); plot(t,a2); plot(t,a3); plot(t,a4); plot(t,a5); plot(t,a6); plot(t,a7); plot(t,a8); plot(t,a9); plot(t,a10); plot(t,xt,'r'); 0 0.5 1 1.5 2 2.5 3 3.5 4 -2 -1 0 1 2 3 4 5
  6. 6. t=0:0.001:4; a0=(5/2)*ones(1,length(t)); a1=(-5/(1*pi))*sin(1*pi*t); a2=(-5/(2*pi))*sin((2*pi*t)); a3=(-5/(3*pi))*sin((3*pi*t)); a4=(-5/(4*pi))*sin((4*pi*t)); a5=(-5/(5*pi))*sin((5*pi*t)); a6=(-5/(6*pi))*sin((6*pi*t)); a7=(-5/(7*pi))*sin((7*pi*t)); a8=(-5/(8*pi))*sin((8*pi*t)); a9=(-5/(9*pi))*sin((9*pi*t)); a10=(-5/(10*pi))*sin((10*pi*t)); a11=(-5/(11*pi))*sin((11*pi*t)); a12=(-5/(12*pi))*sin((12*pi*t)); a13=(-5/(13*pi))*sin((13*pi*t)); a14=(-5/(14*pi))*sin((14*pi*t)); a15=(-5/(15*pi))*sin((15*pi*t)); a16=(-5/(16*pi))*sin((16*pi*t)); a17=(-5/(17*pi))*sin(17*pi*t); a18=(-5/(18*pi))*sin(18*pi*t); a19=(-5/(19*pi))*sin(19*pi*t); a20=(-5/(20*pi))*sin(20*pi*t); xt=a0+a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+a11+a12+a13+a14+a15+a16+a17+a18+a 19+a20; hold on; grid; plot(t,a0); plot(t,a1); plot(t,a2); plot(t,a3); plot(t,a4); plot(t,a5); plot(t,a6); plot(t,a7); plot(t,a8); plot(t,a9); plot(t,a10); plot(t,a11); plot(t,a12); plot(t,a13); plot(t,a14); plot(t,a15); plot(t,a16); plot(t,a17); 0 0.5 1 1.5 2 2.5 3 3.5 4 -2 -1 0 1 2 3 4 5 6
  7. 7. plot(t,a18); plot(t,a19); plot(t,a20); plot(t,xt,'r'); t=0:0.001:4; xt=(5/2)*ones(1,length(t)); plot(t,xt); for i=1:100 t=0:0.001:4; ai=(-5/(i*pi))*sin(i*pi*t); xt=xt+ai; plot(t,xt,'r'); end t=0:0.001:4; xt=(5/2)*ones(1,length(t)); plot(t,xt); for i=1:1000 t=0:0.001:4; ai=(-5/(i*pi))*sin(i*pi*t); xt=xt+ai; plot(t,xt,'r'); end 0 0.5 1 1.5 2 2.5 3 3.5 4 -2 -1 0 1 2 3 4 5 6 0 0.5 1 1.5 2 2.5 3 3.5 4 -1 0 1 2 3 4 5 6
  8. 8. 0 0.5 1 1.5 2 2.5 3 3.5 4 -1 0 1 2 3 4 5 6

×