Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Reservoir characterization

3,655 views

Published on

reservoir characterization integrates all available data to define geometry, distribution and flow properties of a petroleum reservoir

Published in: Science
  • Be the first to comment

Reservoir characterization

  1. 1. RESERVOIR TRAINING CHAPTER - 1: Introduction I Reservoir characterization CHAPTER — 2: Geological Model I OHIPI Uncertainties I Conclusion.
  2. 2. PROGRAMME (PART-1) 1- Introduction. 2- Reservoir Characterization. - Essentials ; - Seismic ; - Petrophysic; - Logging ; - Tests ; - Monitoring.
  3. 3. RESERVOIR UNCERTAINTY SOMETIMES YOUR REALITY DOES NOT FIT WITH THE TRUTH
  4. 4. 1- INTRODUCTION 1' 3~: «~i: : l T9 .1-I. . 2 H. » "—. ;l<“: . Maps. Cores. Logs, Tests, etc. .. Q‘! .*~.4~
  5. 5. 1- INTRODUCTION The different steps of the exploration and exploitation of hydrocarbons can be summarised as follow: - To Define and Locate the most likely trap. - To Characterise the Reservoir : petrophysics, fluids, dynamical characteristics. - To Build a Geological Model. - To Evaluate the Original hydrocarbons in place. - To Define the main Uncertainties. - To Build a Provisional Dynamical Model (simulations of different scenarii). - To Build the Field Development Plan. - To Develop, Produce and Monitore the field. - To Match the Dynamical Model to get the best Forecast.
  6. 6. 1- INTRODUCTION EXPLORATION - APPRAISAL WELL 1- To evaluate OHIP 2- To highlight main uncertainties 3- To propose appraisal acquisition programme for reducing uncertainties E’ 1-Quick-Look 2-First interpretation 3-Final study
  7. 7. -’-'. ~,. r_ 3‘ - V" 1- us. 37‘ . < '~. ~- 1- INTRODUCTION ! '?_«'''5‘ 9- An Integrated Study takes into account all the data available from the different speciallities : - Geophysic: isobath map. - Petrophysics measurements: mud-logging, core, wire-line logging, laboratory analysis, sedimentology study, etc. .. - Dynamical data: tests, dynamical analysis on core (capillary pressure, relatives permeabilities, etc. ..) - Fluids : thermodynamical studies. To perform the studies : collecting the whole consistant data available is the crucial point.
  8. 8. 1- INTRODUCTION 2G&R study worliflow TO WORK IN THE TRANSVERSE VVAY IS THE BEST METHOD
  9. 9. 1- INTRODUCTION V The main milestones in the study workflow Smdv, *: .c'-: ):. -(. - -‘)l work '-J -sI. :al. .<: aI1~: :s: and dam T, ;., ;.: .1y -; .0I'1!. 'Ol TO VVORK IN A TRANSVERSE VVAY IS THE BEST VVAY l. l0-delaivxg 131' the . 'es<-. -Ivclr mnel aIL‘. ‘*nte(: lLIre Petrophyslcal modelling V. Workshoplrovlew (Geovlslon room) Dynamic Sl(‘lUl3ll0f'lS i
  10. 10. 2-0 RESERVOIR CHARACTERISATIONzdata-base DATA BASE REGIONAL DATA 20 and 3D SEISMIC (mapping. cross sections. seismic model. seismic) sequence) MUD-LOGGING (Shows. Losses. Litho Description from cuttings) CORES (sedimentology. Petrophyslcal Parameters : Static and Dynamic) WIRE LINE LOGGING (Reservoir Characteristics. Correlations) MDT (Moblllties. Contacts. I-letorogeneitios) TESTS (Reservoir Geometry and dynamical characteristics; PSV (Depth matching. Seismic model)
  11. 11. 2-0 RESERVOIR CHARACTERISATIONzdata-base INTEGRATED STUDY: Data integration for reservoir modelling core analysis Psioacotillc Goaoay Potqilques DVn3_miI= lfit_a - ' ham _ ' . I I I E pom» E. - ‘ts’. ’*. ‘- ‘ '_€___E: _ ‘. .:‘b , seismic ' " RESERVOIR MODEL
  12. 12. z, 3. '- 1”“ ~T': ~. ,4v~‘ .1 7 —; if it / ‘ (y _ I _("1r~‘1 . . ( , pp? ‘ r 1 / L‘. I ‘ ‘ ‘ ‘_'rl ‘ .4‘ I . ‘m. 4.; .4 "_ -‘ x4’ is _» r‘ I‘ ~. I’ "e, _. A ,4 ‘M I LJ1‘ ~ . I . - . IDSSIL. Two main factors: Porosity and Permeability 1- Porosity Two main. factors : arrangement and variation o/ the grains size Cubic and different size Rhomboed, -af and different size Effect of variation of size o’ ‘n or *0 0' ‘o 7' v I 2. " 0» -O = - »- I' 3 P ‘_)l .6 I O O 8 O Phi = 26% Phi = 48% to 0%
  13. 13. 2-1 RESERVOIR CHARACTERISATION: ESSENTIALS Definition: The pore spaces in reservoir rock (interstices) provide the container for the accumulation of oil and gas deposits: moreover, pore space, gives the rock its characteristic ability to absorb and holdfluids. The grains are all irregular in shape and size, the texture is depending on : - Nature of minerals (quartz. felspar. calcite etc. . . .) - Degree of transportation (erosion of the grains) Two types of porosity : - Original porosity: constitucd when the formation was laid (sandstone etc. .. ) - Secondary porosity: history of the rock (ground stress: fracturing, jointing: water action: solution deposit) Classification: - Effective porosity: continuous or interconnected porosity. — Non-effective porosity: discontinuous or isolated porosity. Only effective porosity has real significance in reservoir rocks, it is only from this type of porosity that fluids can move and be recovered. TAKE CARE: - Some rocks are porous and no permeable (volcanic, shale) : no reservoir. - Others with low porosity (5%) can be permeable (open fractures), and are reservoir rocks.
  14. 14. Q 2-1 RESERVOIR CHARACTERISATION: ESSENTIARLS Effective porosity: 20% mm’ Eflccfiw porosity: 5% Matrix: porosity 0% : Total porosity: 25% Shale (included in matrix) matrix: 75% _ Irreductible Water (Swlr) = 18% of phi-ef Elicctive porosity: 20% Oil : 72% (So ir= 25% and moveable oil 75%) of total oil Effective porosity So Inn= 75'! - Example: Total rock volume: lm (= l000 liters) Effective porosity: 20% 2001 : Non-Effective porosity: 5% 50] lrreductible water: 18% of phi-ef , 36l Total all: 72% I64] : moveable oil: 123 l and irreductihle oil: 41 I 0V0W= 10% 3 12-31 Quartz, carbonates etc. ..
  15. 15. '5?- 2-I RESERVOIR CHARACTERISATION : ESSE. VTIALs The fundamental data to know about the deposit environment are: 0 Type Of Sedimentation (lagoon, platform, estuarine, shore bars etc. ..). o Regressive or trangressive sequences. 0 Main heterogeneities (lateral evolution, vertical boundaries. ..). - Structure (fold, faults). 0 Etc. ...
  16. 16. 2-1 RESERVOIR CHARACTERISATION: ESSENTlALS o The fundamental data to know about the rock are: c Lithology (sandstone, limestone, dolomite, shales. ..). o Porosity (phi). o Clay contents (Vsh). o Water Saturation (Sw). o Permeab| ity(k).
  17. 17. 7 l T 2-1 RESERVOIR CHARACTERISATIONIESSENTIALS o The fundamental data to know about the fluids are: o Nature of the differents fluids in the reservoir. o Thennodynamical fluid analysis (for each independant reservoir). o Formation water analysis. Water compatibility (formation I injection).
  18. 18. 2-1 RESERVOIR CHARACTERISATION: EssEN'rIALs Main ways to get information: 1- Seismic 2- Mud-Logging 3- Core 4- Logging 5- Tests 6- Monitoring
  19. 19. ~ -—. r‘. .,-a » 7 xx -— ~ r—. -- - ~ _, ear--‘~-~ ~ » r, . r—q-— / ' ‘ ‘ ‘ _ I ‘4,‘, V 4‘ V‘ 0 0 . ... ';U L A . ’ _. . . ;i t, .-, : ... ~ . , . . . .L . -.LJ/ ”.t .9. : .se1sm1c Streamer SOUTCB 30 seismic
  20. 20. 2-1 RESERVOIR CHARACTERISATION: ESSI: i Objectives of the Seismic: 1- Define the structure of the subsurface to perform maps (isochrone then isobath maps). 0 2- Identify seismic sequences (strati-seismic) o 3- Nature of fluids if possible (bright spot; flat spot) - 4- Evolution of the fluids contact if possible (Seismic 4D)
  21. 21. 2-2 RESERVOIR CHARACTERISATION: seism1c I"“'E”“"
  22. 22. 2-2 RESERVOIR CHARACTERISATION: seismic ' The physical law applied to study the waves is the propagation law. There is a distortion of the elastic media which desappear when the cause stops. Three different types of waves: - Compressive (P, like primary) : the faster one, the direction of displacement of the particles (vibration) is parallel to the propagation axis. P waves take into account the matrix + the fluids. - Shear (S like secondary) : the displacement is perpendicular to the propagation axis. S waves take into account only the matrix. - Surface waves or Stoneley : slower, their displacement follow the surfaces where the characteristics are changing.
  23. 23. -9 , 2-2 RESERVOIR CHARACTERISATION: seismic '‘ If the ray encounter an interface where there is a change in the characteristics of the media (V or density), there is a reflexion + refraction. Impedance = V * density 7 if fluid or porosity variation or facies change, means the impedance change: - Facies determination from seismic - Fluids contact determination (bright spot, flat spot)
  24. 24. 2-2 RESERVOIR CHARACTERISATION: seismfi -u-4.-A-o. -nun CHllT§$§. lllfiIIUK1lIU1jKIf&
  25. 25. 2-2 RESERVOIR CHARACTERISATION: seismIc For each shot, the recorded signals are corresponding to different reflexions or noises from different origins: - Primary reflexions, - Multiple reflexions - Diffractions from bright spots (fault, etc. ..) " 0 o
  26. 26. ”*‘ ' A at . 2'2 L/ i . .seismic L“J C’) Eva! K"‘J / l .9’ C 3 / V ( ) 7;- ( 7 J L / S C’? "‘; .. -’[ultiple reilexions vl'1< n ’u| ‘II'r. v. nun . :,. .,. .. (‘lrl7x'l| l 1: {mm -nj-e1». -mt : I:<_(v‘r m .1.-n. -pt let u. - at pi‘, -[; .‘. Il)oI| ll y. .rw- '1 mt 1- wt. 2:. .. . < l-, - :1.-. r~ run . ~n! :t~o
  27. 27. T". *'7*‘ ; . 5'5; 3 ' ’""""‘ D 1 (V o r'~ f . , . . I ‘L . .’y'’'--. ~a_, : -4 .1 , __“t‘. _ V J : Two par rreters can clraracte ize a signal : - The p _riod (frequence). - The shape (phase spectrum). es '3.I«: urS de vitexze cl dc dcmité des couches (M iug LI‘inip{: dIin‘t‘€ Z P V (cl dispositif decquisitjon avec les marqueurs M1 at M2 (d) Sismogrammc impulsionnc (cl Stsmogrammc oblcnu avec unc source En la) CC-‘Jpn. ’ pzéxrlogrque avcc I ha‘. rais partanl dc iéxnelteur ct rewnnnt au rec. -pteur aprés réfl-: xion sur l c'est-3-dire obtenu ave: une source infmiment brim (Dirac) bar. -.ic passants Izmitéc ___: __: _____ ’: u~ . .,: »
  28. 28. -1 A fad 2-2 RESERVOIR CHARACTERISATION: seismic ' 2. detection (In) detection (m) ‘‘''’°‘ ‘"‘'“°‘ zooo 67 7 soon ‘I67 17 20¢! ) 33 50(1) 83 Z
  29. 29. 2-2 l‘<; E°ER/ 3]? CHA”{AC7“ERI. SATf‘ 3rN: seis1n. ic J _ .4’ I. ,~ W E . . BF):
  30. 30. Image dc 5i5mr'que en 3 dirnerzsiorzs 3D seismic imaging
  31. 31. Tools to adjust surface seismic (structural & stratigraphic). - 0 time versus depth: seismic matching o T= f(depth) + log = => synthetic film. o VSP + corridor stack or VSP inversion = => seismic extraction signal. o lNALK: AlNAIL 0 AVG calibration and Image (deeper horizons than the TD). - ; 0 Reservoir characterization : lithology. fluids (bright spots, flat spots). a Pwaves "I matrix + fluids; Swaves 1‘ matrix 0 Swaves are not recorded but their energy deducted from Pwaves.
  32. 32. ?. —~, ‘/; {Lil 75:‘/ ‘s3 vC1€; :Lj; ¥;AC E.3I5.sI3£; Ti1'C; l E : seismic . Linked to the time necessary to the acoustic wave to go and back from the surface to the marker
  33. 33. 2-2 RESERVOIR CHARACTERlSATlON: seismiF
  34. 34. 2-2 RESERVOIR CHARACTERISATION: seismiF Walk-Away
  35. 35. Modelisation ma; Seismic image gum Model(ex: channel) rough or treated Iterative Inversion: at each step the calculated image is competed to the actual image
  36. 36. L 3': 2-3 RESERVOIR CH. =RA(TTERlS. »T| ON / SEISMIC KBTU seismic Example KBTU first draft-3 (geol) KBTU presentation (core study)
  37. 37. 2-3 RESERVOIR CHAR. -'(TTERISATION / PETROPHYSIC MUD-LOGGING: data acquisition during drilling 1- drilling rate 2- weight on bit (WOB); drilling information (bit change, mud weight, etc. ..) 3- total gas 4- gas analyse (chromatography) 5- shows (UV, direct & indirect) 6- calcimetry ( % of CaCO3) 7- Iithological log ( geological interpretation, toplbottom of formations) 8- comments (lithological description, miscellaneous observations as losses etc. ..)
  38. 38. ‘K)"’¢* ~"‘ ’— <_ H J — —’’—v-. t'—- _ . , _~, Z-3 E~’. i': ’.f: .-Li: ‘.l? .‘i”Cll 713 : ‘.. E"l, “.Kt3I{. ‘:f'k’. V13E: ‘z! f’: ,l, ‘'l‘l‘Elxl / PE'l‘R()l’l-IYSIC PETROPHYSIC 2 Physical properties of the porous network -as 1- Static §3i3‘li'O§Jl1ySlCal characteristics: -= Porosity (phi). - Clay contents (Vsh): nature (DX) and structure (thin section). -1- Saturation (Swi, Sor, Sw). «e Specific Gravity (Rhob). is Resistivity Index (m & n in Archie law). -as Velocity : P & S (compressive and shear waves).
  39. 39. 2-3 RESER"OlR CH. vR. =C'l’ERIS. -iTl()N / PETROPHYSIC PETROPHYSIC 2 Physical properties of the porous network . 2- Dynamic petrophysical characteristics: 0 Absolute Permeablity (kv, kh). . Relative Permeability (Kro, Krw, Krg). . Capillary Pressure (Pc). 0 Wettability. . Pore Compressibility (Ce = LVI VP). 0 Measurement under stress (to correct porosity, permeability, and give Cr essential parameter for depletion calculation).
  40. 40. ‘ Ina; .'- 7 ‘" 2". ‘ 2 “W” ‘ , ' * ‘. , -‘fax A 2-3 §{. Cf‘; ;i‘. ;?. ‘i (31.3 L v. ~(. «*. -C i 5,; 2 iC. "~. / PF. TR()l’l*l“. SlC 1- PETROPHYSIC (static) -21 Core: Description of the samples * Homogeneity of the sample * Lithology: main component (sandstone, limestone, dolomite, anhydrite. ..) secondary component (sandstone, limestone, dolomite, anhydrite. ..) Granulometry (sort) ' Shales description : shale identification and type of deposit. * Discontinuigg: drain, border, fissures, orientation. .. * Macroscopic porosity: matricial, vuggy, dissolution ' Structures: Dissolution I Recristallisation - Shows ‘~—
  41. 41. 2-3 RlCSF. RV'0IR CH. »R. »‘C'l‘ERlS. ~Tl0N / PIETROPHYSIC 1' Lit oogica escription: .xempeo at in section Cementation by precipitation of water solution (ex: siderite) v oeifiicro-fracturation (one event older) olithcs _-llicro—fossils ‘_ ystal growing . ___Becr_'stallisation with inter penetration l’etroph_vsical description : the porous network Isolated vug Open fissure Shell dissolution lntererystalline porosity
  42. 42. F "' “ ~“. ,"‘; + 2-3 %2l? .E; li§Z'Ol R C: f’i‘i£. :ti: ;;. t9I: ,:i-1 / l’i3'l‘R0l’ll"§lC ’ 55- '? fi‘''. '._'' ‘ b . V a: non skeletal facies ooid, grainslone '>. ;_ '- r 2 with well developped mouldic porosity ' “ 7 " coated grains. 1 _ -it matrix = recrystallised calcite spar. , _ "L 3 1‘ R if b: same but with well developped cortical ‘° . I; _: , _ - laminae. . _ i_ ' I , '_f- i _ 3 c : skeletal facies packstone, fusulinids “ ’ * I : M‘ (F) mollusks (M), crinoids and i’ V bryozoans. . r. ‘ 5 .1 ; . 1,’ t , ' ‘ d : skeletal facies grainstone, fusulinids . . 1 _ , ,1 ‘ at ‘__ , T cri'no'i'ds ©, bryozoans, " “ P I ‘ ’ brachlopods, algae, peloids (P).
  43. 43. c . ‘ V s X. P‘ » aw»! ’ '1 ‘ . /K v f “ . — . ,, _ —,4 A. -(‘>4 f—-, -‘= *". r* I r: - ' *- . :~ 4%. ,‘ . . , .t | / PF; I‘R0PrIv§Ic Oomoldic porosity in a recrystallised ooi'd grainstone. Secondary porosity due to dissolution (Diagenesis).
  44. 44. V7 1 Wk‘ ‘f_‘~-‘I ,4!‘ ' . *- ' / |’F.1‘lZ()l’l~| "’S~'lt_‘ V“ 2-3 :2:r3:«: :2 QM Ce: 1 °aCl1E: Q.fi‘; ~ ‘/ ‘v I if 5; I1 porosity in a marine low energy Mud °f IOW energy Ievel marine micritic deposit from Persian Gulf environment (Cretaceous, North Sea).
  45. 45. nae: — K V ‘V ‘Uri 3&5»-k» 5- 3' - . , 3 — — , —-. - . , e‘ 7.‘- ~ ~ , ;. ;_'_. ._, _~) , ;_' A . T " ' ‘; ‘;~, ' ~' , __ 3;, ,_. ;1_: _7 . . L " iL'‘*. ~ “*9
  46. 46. 2-3 ;2:«: ::»; :«: : .‘-: “.I'IiiiZI"‘L: ‘,'§‘E: ;.gi? f:; ,"&i' ‘l3£‘= ..j/ PF. TROPl*lYSIC 1- PETROPHYSIC (static) clay arrangement inside the porous network Clay coating (more often illite and/ or chlorite) Bridge effect Some clay as Smectite can inflate if any water Filling-up effect T . —h‘ f__ ,4 f ' *— ‘ A ‘V: // if ispersed clay (more often kaolinite) . ‘{, "~; -1,. " . __ . :“"
  47. 47. 2-3 RESERVOIR CHARACTERISATION / PETROPHYSIC‘ 1- PETROPHYSIC (static) : HOW TO MEASURE POROSITY? 1- In emu hole Logging (average investigation : from one inch to one foot from the bore-hole). Continuous recording. average porosity around the hole. Electrical wire-line: Sonic: (BHC spes), Neutron: (CNL spes), Density: (LDT spes), Magnetic Resonance: (CMR spes), give the effective porosity. Formation Evaluation While Drilling (Fl-IWD]: Same tools (except CMR) but included in the drill tring 2- Core Study in laboratory: - Plugs picked up from the core (porosity after washing) - Core are rare (one or two wells) and more often do not cover all the reservoir. - Ponctual point of measurement.
  48. 48. 2-3 RESERVOIR CHARACTERISATION / PETROPHYSIC If 1- PETROPHYSIC (static) : Calculation of the Saturation SW“ = a/ Li“ . Rw/ Rt ARCHIE E Carbonates : F= a/ E "‘ HUMBLE C San ds : F = 0.62/["5 SHELL E Low Porosity : F = 1.87 + 0.019/E m / => Sw / ' n / => Sw / wettability to water or conductor shale: n wettability to oil : n / ' lZSw / ' RESW
  49. 49. 2-3 RESERVOIR CH. -=R. »C'l‘ERIS. »-'| ’lON / PETROPHYSIVC 1- PETROPHYSIC (static) Consequences of the petrophysic on the Formation Factor: In a water-wet rock, with the same pore system, II will be lower than in a oil-wet rock m is linked to the porosity and to the current path : lf L is increasing proportionately to the decrease of the porosity, lll remains constant (ex: m=2.0). lf L is increasing and phi constant, then m is increasing (ex: m=2.14). If the clay is interstratified into the rock, Rt will be lower and Sw will be over estimated
  50. 50. 2-3 RESERVOIR CHARACTERISATION / PETROPHYSIC, 1- PETROPHYSIC (static) m (eementation factor) and n (resistivity Index) depending on: - Porosity - tortuousity of the porous network - Permeability - Saturation - Wettability - Heterogeneities (vugs, fracturation. ..)
  51. 51. 2-3 RESERVOIR CHAKACTERISATION / PETROPHYSIII‘ 1- PETROPHYSIC (static) How to calculate Water-Saturation? From Logging, data required are: Resistivities (Rt & Rw) IDLL, lnduetion-log Shale contents (Vsh): GR, Sonic, LDT-CNL, etc. .. Porosity : BHC, LDT-CNL, CMR etc. .
  52. 52. 2-3 RESERVOIR CHARACTERISATION / PETROPHYSIC vi 1- PETROPHYSIC (static) How to calculate Water-Saturation? ARCHIE: Clean formation SW" = a/ U" . RW/ Rt SIMANDOUX: dispersed shale 1/Rt = (( E2 SW 2) / aRw(l-Vsh)) + VshSw/ Rsh INDONESlA: shaly sands
  53. 53. mew 2. 6 2-3 : t:«: :«; i«: R "mist Cl-; f.«R, *t. £7'i‘i~IRiE= §.~*= .’ '| ~’J. I/ PF. 'l‘R()Pl: l“'SlC 2- PETROPHYSIC (dynamic) Two dynamical parameters act : pressure and viscosity of the fluid r= k A/ )1 * dp/ dx Unit of permeability: Darcy (mD more often used) _A lcml D latm A r. _.jNi'ater lcl’
  54. 54. 2- PETROPHYSIC (dynamic) The perm depends on whether the rock will let the fluid pass through it with greater or less ease. Two important petrophysical parameters : structure and porosity of the rock. Kv=30lJmD Kh=80mD Kh=5tl0mD Very small Irregular grains Anismropy: l(v= S0mD Kl‘ > K‘ -L’ KlI= l00mD ' I KlI=200mD '‘‘'‘5“'''” I 1 Small flat grains
  55. 55. 2- PETROPHYSIC (dynamic) Each layer gets its own characteristics: facies description, philk relation, etc. ..to be differenciated
  56. 56. 2- PETROPHYSIC (dynamic) Permeability measurement: 1- During drilling MDT pretest : give kip very close to the bore hole. very good for gradient calculation but just as sensitive test for permeabilit_v (qualitative results). 2- Production test after drilling: remote permeability, define k. h/p group. In the best cases, the test investigation can reach until I km from the well (average permeability. but the interpretation can define variation of the group kh/ p). 3- Measurement on core: 3-I on plug: punctual point usualy do not fit with the production test interpretation (measurement on core is carried out with gas displacement and the plug of 1 inch length, has been under mechanical stresses : bit, differential pressure between bottom hole and surface etc. ..). 3-2 Along the core: The Minipcrmcameter can pick-up hundreds of points (injecting nitrogen into the core), results are qualitative but give the proflle of the permeability distribution.
  57. 57. 2- PETROPHYSIC (dynamic) : relative permeabilities 3 fluids (gas, oil, water) can act in a reservoir, one must consider relative permeability relationship. The effective permeability for one fluid is in relationship with the ratio of the others fluids. When the reservoir pressure is decreasing, the flow is going under the bubble point pressure, more and more bubbles of gas appear and block some pore to pore (gas bubble is growing when the pressure decreases), the oil rate is reduced and gas rate is increasing: this is the fact of relative permeability. The same for oil and water at water breakthrough. Similar for gas and water.
  58. 58. 2- PETROPHYSIC (dynamic) Forces involved in the fluids flowing: - Pressure over the fluids - Gravity forces - Capillary forces between two fluids no miscible - Viscosity pressure losses when displacement Physic laws about the diphasic equilibrium and flowing are known, but the description the porous environment is not, so, Physic laws about the diphasic equilibrium and flowing will be describe with experimental measurement in the laboratory.
  59. 59. 2- PETROPHYSIC (dynamic) Effect of weight of fluid HEIGHT ABOVE FREE WATER LEVEL HEIGHT ABOVE FREE WATER LEVEL C. J 4. ! L. »'«. -7.L'. -E C? 'ZFEERENCE I? » ‘. '.'EIG>‘T CF FL. .‘ZEt£~ SMILL EYIFEEEE-'. CE lh 5‘-‘E. '3“T CF FLUIDS 5 'Hi ZCWE 3-’ 'R)‘-ha TON ERG“ '-I6" T**lCtC ZDIKE DE T3.Al‘ ". - ON FRCM P - ‘C LO. '.' SAT. .‘R.5C"IO’- ‘v‘: 'E—1l‘t{.7 ’L‘. .lE TC‘ LC ‘. ‘ _‘y¢‘«7i. .F‘JTlO~' v‘. ’E"’l? lZa ‘Li. C2
  60. 60. Sunk - 1 Ls '$. ¢-.4 (-3.; K 90:31 4'» Kg. Eu‘ E-. s;lL. - 3 5 . ..: ‘l‘. . a---‘ E? .,. ,.. .(, ,, .15 (WfI. A-tD'| 'gE Lu~. l: -L S-. Y-karnio-. ‘‘ THINER IS THE TUBE. HIGHER IS “rm-: CAPILLARY mace Pc= 2Tcosa/ r
  61. 61. PRESSION CAPILLAIRE PAR INJECTION DE IERCURE Imuhtlllrlnptuadntleou 2- PETROPHYSIC (dynamic) 73$‘ f4V‘IllJlII7. PAR EVAN IONIMIIFS tiillllfil‘ IIPSEI “XI-EH: BU (our: -sxtan Irv; | .1u')tIcxY. !KIt. Mill; on’ umouxnt in I-1.t«unx. rW. in no “H (‘II l‘| .l MOI. MI ‘no N’ - (Nut 01 8 rayon do pore (mlcvom 1N -g, ci2a.4ss7.es1' . H"‘--0-. ..e. ..', f o- J '3' 1' I 5 I J :1 3 flIlNfl"V‘UI '5 IIJJJ zuuoslonjndnuflillvltnutuuluux
  62. 62. 9.. . arvwv ff‘, “~‘ rt ~'“‘; : :2 3 £5 “W / 433111; C. .i PlZ”l‘R()l’l*| ""SlC 2- PETROPHYSIC (dynamic) Example of Capillary curves Restitued in depth . -.1.-1:. min _'. t:i: : u! v‘rj‘; '_, "S‘.1‘l
  63. 63. 2-3 RESERVOIR CHARACTERlSATlON/ PETROPHYSIC 2- PETROPHYSIC (dynamic) relative permeability curves are depending on - Nature of he porous network. - Rock wettability in relationship with fluid fluid couple. - Saturation. - flowing angle (generally parallel). Viscosities and flow velocity are not involved.
  64. 64. 2-3 RESERVOIR CHARACTERISATION / PETROPHYSIC ‘ - Wettability is directly in relationship with the surface tension. - The surface tension is provided by the attractive force of the fluid molecules which attract surface molecules towards the center. - A liquid wets a solid when adhesion of the liquid to the solid is greater than cohesion oi liquid particles for each others. . .) ' I- water wets surface. I- Mercury does not wet surface. 2- Water spreads out against force of surface film 2- Mercury is retained by force of surface film Angle < 90°: wetting fluid Angle = 90°: neutral fluid Angle > 90°: no wetting fluid
  65. 65. WETTABILITY: Generally the rock is wettable to the water (in the geological time water was the first phase in the rock). Water is blocked in the angles of the pores and is coating the grains. ; oil is not in contact with the rock. -)There is only contact between oillwater. giinterfacial forces J’ = 2TcosxI r.
  66. 66. WETTABILITY: The oil moving is conditionned by the interfacial forces which is separating the two fluids. interfacial forces are depending on: - Temperature, Pressure, Gas in solution, Viscosity, Tensio-active agent.
  67. 67. With 2 pores, one bigger than the other we will get: . ) ‘ WATER 3- on 42-? p *%’r/ l{0CK 5-. ./“"’ *. iIer ellahilily: water is displacing the oil faster through the thin pore, arriving first to the exit and trapping some oil into the big pore pore-I / ”“‘~/ r” T. “ ~. ,_ 3 warm 0.1.‘: I__ ‘$-/ —" ROCK ()il w. -it: il)ilit_': water is displacing the oil faster through the big pore, arriving first to the exit and trapping some oil into the small pore
  68. 68. WETTABILITY: In fact it exists a contradiction about the recovery factor linked to the wettability: In one hand, due to the capillary pressure, bigger drops of oil are trapped if the rock is wettable to the water (as described before). On the other hand, if the rock is wettable to the oil the path to the water is easier, consequently the recovery factor would be lower.
  69. 69. WETTABILITY: Even if electronical forces are strongest than the viscous forces, in case where the rock is wettable to the oil , there is an erosion of the film covering the surface of the pore, and slowly the recovery factor becomes higher than predicted. We know now (electronical microscope and micro-model) that the best recovery is corresponding to a neutral wettability, in a scale from -1 to +1, the best is between -0,1 to +0.1.
  70. 70. WETTABILITY: Intermediate wettability wettable to the water Slightly wettable Slightly wettable wettable to to the water to the oil the 0" WI
  71. 71. :3- PETROPHYSIC SYNTHESIS Synthesis: WHY? Because petrophysical measurements are very long to be carried out (particularly kr, drainage in full-size. ..) Because measurements have been required by differents entities (Exploration and Reservoir engineering) Because sometimes different laboratories are carrying out the measures: An high risk of incoherency exists.
  72. 72. 3- PETROPHYSTC SYNTHESIS Synthesis: WHEN? *> After the elaboration of the data base (logging, geological study) . Before the Reservoir dynamical model Synthesis: HOW? » the data coherency with others others sources (logging, geology , core). . Interpretation of these data in order to be directly used (depth correction, restoration in bottom hole condition. ..).
  73. 73. 3- Petrophysic Synthesis: Methodology a 1- Data coherence. a 2-Jibetvveen the : or - petrophysical properties - - geological properties a - logging properties. a 3- Identify their organisation all along the well.
  74. 74. o LOGGING - Geological acquisition - Depths of formations (Top and Bottom) o Lithology (simplified) and environment o Structure (dip, faults, deposit figures) - Petrophysical acquisition 0 Ll Vsh, Sw, o Fluids (gradients; sampling)
  75. 75. o LOGGING Main Tools (Classical) 0 SP (spontaneous potential) . NGS (natural gamma-ray spectrometry) 0 AIT (array induction imager) . DLL (dual laterolog) . AS (array sonic) . BHC (borehole compensated sonic) . CNL (compensated neutron log) . LDT(lithodensity tool) . FMI (fullbore formation micro imager) o CMR (magnetic resonance) 0 Etc. .., etc. ..
  76. 76. tit LOGGING Sampling ~» MDT (modular formation dynamic tester : gradient, fluids) -» CST (sidewall core) F'roo'uci ion «a PLT (production logging tool) - RST (reservoir saturation tool) a TDT (thermal decay time) - CBL(cement bond log) - CET (cement evaluation) Seismic - SAT (seismic acquisition)
  77. 77. o EXPLORATION I APPRAISAL WELL: 0 DO THE BEST LOGGING PROGRAMME TO REDUCE UNCERTAINTIES : - INTER-ACTIVITY ounmo LOGGING. o OPTIMISE THE TEST PROGRAMME TO RESOLVE THE REMAINING UNCERTAINTIES : - MDT PACKER AND SAMPLING. - CASED nous TEST.
  78. 78. e LOGGING _ I. /____. __-#_ ,4 T‘ T .1 N’ T‘ _ , — — T 7 . _ » ‘ « I T :4 , 7 A < ~ ——A . » I _ _, 1 , , . -— 1 4- ->-; ,— ' I I _ FT»? 77*‘ __—’4_A'v
  79. 79. . Lise-. ~.= ; = _.. ..~an. -L_u: ‘ 1'3-" . ,.. I.i-l. .1lIf: .‘¢IIi Ire I 1., I -ll Hill Yllrl ‘-'7 Ill; :7‘. ,"! "SIliitz’ : :.'. 1-:25: -v. x ' I LEE‘; -. . A I , . . . ,u ’ ,1 vase I-2.‘: sis . .. = IL-§EKZ! l£l, "l llliiih. ‘ . r tntnaniz -.1,i-. ‘i. ‘.I€lliliIl’-‘ Jitmntnaui E31 Elfil Ht. ‘-w: I'iIi*‘I 14 IKE; -.. E5” - .1; i= .:. lane»: user _ II I Vii: illatiitfiial llfliii [F1325 -. '. au; rat: t:Jg' . ... ... i.rzI£'§ElFi .1‘ II II‘1l! "Ii. HI. 'o‘»‘l| Y _ ‘uli; iEHl5.Ki. ‘‘- , . ' ell; -1.‘, «_y: i,gi; IIIEL ‘: ' : ULl1:! i”In liar l"l1.= ' l I lit: El . iii If 3fIllI€| £'E . ll , _ niildll . .i’1'f"! _.I‘iH ‘-Hi! IIIIITEH-_< I Illilifiifizil E II [:1 '5 5-7.! C. in Hsbartfifin i manna-»_: g;i_eE -Tlnttazua mg -—. ..: . . ., ~ I . act‘. -. Jlilififiifcll ~J'4'f: ‘i v_ ' 8Rl. "i‘. ‘I: _ -AEKIIKHEEC "1; -W '_ < : -». )t: M'gll: ai&'z": :t. =ir- . .-. ... .—». .. ..- -n-v-vi-iv. ..---. ——_r‘_ t: :~‘: t:: ).1i: i2_1|tu I a: auannmaIzn' , izfi new gums: tastes», ,f—eur a, -.1 , £.‘l£IEEiF. eer"I| I'IlUI‘-‘I : :wr. m‘sa'Iriar1: :1..1-uni. .. w . « 5 ix -ixx: Is. L ( , ., _
  80. 80. 2-4 RESERVOIR CHARACTERISATIONI LOG Refresh: SP: Spontaneous Potential, due to two effects: - electrokinetic effect (with shale no mudcake, means natural current of electrofiltration). - electro-chimical effect (natural current when 2 fluids with different salinities are in contact through a semi-permeable membran). Ion Na+ much bigger than Cl- C - into the invaded zone Shale bed, AlSi02 (0-) E current at the top/ bottom
  81. 81. 2-4 RESERVOIR CHARACTERISATIONI LOG GR: Natural radioactivity due to U; Th; K Vsh= GRread — GRmin / GRsh - Grmin Neutron: Emission of neutrons high energy (4-6 MeV, l0000km/ s) N are slowing down when they encounter a H nucleus (masses are close) In water and in oil H are important, phi=100% in pure water. Density: Emission of GR, the more the gravity of the formation is high, the more there are e- means great number of collisions, consequently the energy of GR in return is low. Cesium or Cobalt source.
  82. 82. BHC : Moving particules, vibration E compressed zone , uncompressed zone Compressive waves: one di, rec, ti, on of propagation_. Shear waves: two directions of propagation (orthogonall).
  83. 83. Routine exercises to be done on each example set. Using an overlay technique or log analysis software, identify all productive zones and rock flow units. Identify lithology changes in the section and define a plausible stratigraphic sequence. Identify the hydrocarbon type for each zone (oil or gas). Calculate Rw for each log using SP, and/ or Rwa methods. Compare the values and decide on the best value for Rw. Calculate Sw for all flow units and draw possible capillary pressure curves for each zone. Compute BVW for the rock flow units. Advanced Work: — Calculate log-derived permeability and producibility for each reservoir unit.
  84. 84. Quick-look HC Identification . Highlight the deep resistivity log (ILD or LLD). «I Highlight Sonic or Density log as Porosity. - Both Sonic and Density read higher in Gas - In a porous, wet zone (ie. Low Resistivity and High Porosity) overlay the porosity on the deep resistivity log, keeping the logs parallel and on depth. a Hydrocarbon is indicated where separation occurs — high resistivity and high porosity. e If you change the relative position of the porosity and resistivity curves it implies a change in Rw.
  85. 85. Rmf = 2.6 @ 60F, BHT = 130F “ iii 5'‘. '. ‘..7". .’. ‘ . III (JIll0A'Il 1.») Hlllllui 'IIII)IV‘V- , ' 9 32:32:31:-—1u-zxgogg ° ; »' G '5 )0“uu, .H, ..55 "v; v|— _ . _ . — . _ . _ . _ . _. :ooc o v. —————————————-e I’, .I.0llMIlI 1500 o -4 woe ‘{ II" c I moo
  86. 86. vv I -110 an . . I. .«. ,.. ..~. I. Vb-I-nuc-ho¢qny§—n. :%= -‘A. a . ~ um. u. _r an-nun -——a I—4D1r‘| - u- . .—I ~. ..—. _._. —- R. .. versus FL“. .. and Form atlon Tornporaturo . a_-a- . ._. .. u. —.: ... ..q—-o-. .ao«ru An-an--out n. ..—. ..-—». . . --n-. ..-. --3. = 3.22.. -_ :2.. . 1.9 13.0 on -on 0.0! 8.: Iefwuni OBI p. ooc ‘I'hnaa¢h-at oonvun cannula: vrmwruc1:IIvIy. Ruug. Oon I3-pa-opt: Rw. .-0.025 olvwuasnl 13001: Chan I-Ito nnunnvuovr-tn: iv@. lo Th¢t¢uvnIIobounca y, ..n¢g. -‘_ . __-g, g3, ‘, ,,, ,.¢, _ Igg-c Iooonvne _n. .¢1oI. ‘.. mcullluuwan Uconuououdxln-u bvgvucocntnn-Infill-§va: Icu. ‘l‘h. n Qootulpooo-oduovu Druuudooomuuuqcnorhfililuoolnmon nfina has up WO8§fO or ‘usage’ o-nu 5-moan l'o dhounolhkdowooo 3. Lmbbuo «M04 «Astra halo u wanna (vnnrocficu cl nuke cmathcn flclbcnocnnngcns tfiligbb causal otcn Iasohntonsltfi uinwbotnouo-I at aacxfhndnns-npooltouautvulaobouaulbrj-bnouuad vbgsnbtlntflvp-on.
  87. 87. Example 3 - Complex Lithology .3 Identify all the lithology changes in the section. a Identify any HC zones in the example and calculate Sw for each zone. «» Estimate if the HC intervals are productive and what they might produce (gas, oil, water? ) and why.
  88. 88. Example 03 — complex lithology Note: Rw = 0.06 at FT. — A gift to you to make this easy. $45!! -Y-VT 12:1 rnv-utr Fllffil‘) Onnmruon OATI 1 sou»! -soon (0:21 u. ... ._. _.. ..-. .ge, _ -- - = .=___. =__________ _. _.. =.5__. _.. =2: -=2 . _ -3-— _______. ._____________e__m_. ______= _ lrlrlll IIIIII
  89. 89. Example 03 — complex lithology ll. IIIIIII . , _ e 1 {at , e . “ 1.1 l. .T.1.. oos . .. . _.(. -v. tt. L.. :.. . . . . .3, . .4 . I , , , _ V , . . , .«: .W.4+. ..i+. ,r-fI, . 4 . .. J._. , ya»: . . voI3>‘ov I . ». ---v I . n nu-an-; . .-n. .fs. _tL. .,%, Y_: .!m. uv%. ?..1fe, . We . :. ,. L A A f . .. .. . .YH. ‘|lIllI. : r_, .:H . 11%; . 3.11.: ,u f1-. ..v. ... ..v~ rm. .. I55? . . L A . a.oL‘s4.¥ a . .|v€ IV+'7V. |9II 6| _ _ _ W 3;? t ‘v . uxT. l1o1o. «»o1o2. if . ¢yvIvIv. oIY 15; W N . _ , . . , . . .4.. . , . . ., vl. ..J. ... d.+ 1.. .u¢. t3Ir. . 1r. rt. ..Jc. !s. . C . .. s.. .»?1 . . , . . _ . , ( . . . .. J . .._. .. :4 $ rrnlu . . L . ... .z. 2. . . . .cTs. .A. .!. .. v o. YvzT»l. (»vLi. _ , I , 41 _ , ; . _ . _ . . J . . .. . . l‘. ,€. .«; .. 2‘: .JTYY. J_. ./+. ... _4« c X. 7733. yfi uf . ‘ . .: +éx12+t ‘ £. .+. .tI. ;.T1tto. .. ~ m _ S , T u . ; . fi .1111: . ,S_! ,.. o,«rxr. x..4 a ilI: a.. TfIo. To«oo. ..olJY _ _. _ _ _ . ,2. 1. 4.. 2.. m s A m _ Q1 ‘ 4.4 . ... ;,_w . . _ Io} Pl. $4Joo, .4o! ’ v»? .,c. o5Lo»: .vYo: ?oo, v. ~. +.. v>Yvx. .r. v . v_4c. v. .v. I. _ 1 , . - _ . , M , L , .tYtl . . I . . I. ..l| .l _ _ . . _ m . . _M M . T filth. L. { _ . . <v¢V| ..v| .414. .1‘w<o. .Iv. K_. Cv , V‘. oIY'Ih Er? ‘ ‘V ‘Y V$$r9yo. vsv: oI 4. J xx. . _ I. N . . . , , . .. . ,1.. . , ... .a. .;u. l?4. ~ . ,
  90. 90. Example 03 — complex lithology vs . .. p. 4 .9 Y114‘Jl‘1‘44‘l. t.>ll§ulH9.. _ L. «»Aw. .2+¢. .¢1ll4lll«ll.1Ii u 3 vv. als§rlfl. llv, w . ..s. . , ,1x: t.z: l.»_ M M , .. fr: ... .r: ... ... ... ... .-. ... ... :, o . lv. .L ». .ulzl. .v. llr$lv»ll. l.lr5 , . .3», aaaa . t X - . . . . . . , . . .. .
  91. 91. --------I aaaaaa at ___________. ___. =___= __. .__. =_. ._. ==_= _== ._____fi . . mm . .c n. ==: :.. unaanuu. .m. #mr. :mnr. .:= . --2%. - _= === _=__= =_= ==_. _== === === «§: _== _= ______________________________________= =_w= =w____. E___ . .. ... . . . . . . . . .. . ... ... ... .3.. .53.. ..= §_E____. =.. ____. __. ._= . . ununmmuwmwneunuuur . :5.= .::5.= =:. ::: :== ..: .5.. ... . . _ = === === __= =_. === =_= =_= === ==_~ . . = === =—= —== _== _== =______= === =___= =_= = ==________= _== ______= ___= __= =_= __= __= =___= ______. _____. ________= __= =__= =_= _== =_. === _== :__. ... _== .__. ... .== __= =_. _== __= _=: _=_= ==: . . == === ==_= =_= ::. =_= _=_. .== =_= =.. === == = _== __= __= === ._= _== :___= ___: =___=53.. ... . = === === _== __= __: =:_= ___. E.= _=___= EB = === === ==___= _._. =_= _=_= ==_= _=__ = = = __= _____= _== ___= =_= =_= =_= =_= === ==_= = - shaley sand . - 0- Example 04 Rmf = 3.08 at 14;
  92. 92. .. p_ all . ... _= =:_= =_= _ __= === __= _=: =_= = . ._: __= === .. ____________= =____= _== === __= __= _=____= =__= =, . M__= =__: ____= _== __= =.= === ________, ___E_______. _ u. ._= ==__= === __= =______= =_= _______=5_____= __ E: _=_= =_= _== =_= :=___: __________E= M__= __= _H , .== ==_= ____= ______= === === ___= === ._= __= =M . .m. _._: ..__________~, _._. .__.52.= :=________. ___Z________M . ;____= .=. _____, === __= .,= __: _=_______= .____: _.= =__, ;__________. ___= ._____. ___. =:= =_= =:___= .=____: __E= _V . __________. ___E4_____ = =:: =____, _______. ____: ______; .. -__= ==_= =_= ==. == ==_= .=§: _== _=_____= =W . .:_= _=_= =_= _=_= =___= :_= g:. £_= =_= :__= ==W . __= __= =_= ==__= = 2_: E=: .== :___= :=_= _=M __= __= =:_: ==_= ==. __= :_= =__s. ______a= E=W Em= ___= =____: E_: ==n. _=___= _=__= _== === _=. ,=W l. .___= _E. ____. .=. .=2_________= === =_= ==_= __= ._= V. ..H: =_: :== =__: __. __________: :_= =_= _=___= =:= . _; __= =_: _3~_: __= ____= _____= === =____= ==__= :=W . A _______= :__= =__= ==________: === =_= === _=u. =A _m__: =__. ____= ___= =__= ___= _______= _____: lE______: _ I: .c. 4»; . . :3 ‘S. .3‘ m1? 4 1.. 7 ‘ , . .9 go _= ==___= =___= _______: _______= _== _=_____= =___= . _= =_ , . H ____________= _______= ___= __= _== _______= ______ _ _. i. , ...3:_= E.EEE§. __= =__= _:= _=__= _____= === _, . . » = ____= ____= __= _== _:: =.. .___= .=_= =____= ==E_. E . .l. ,.an___= =__= _fi= === ___= =:= =____= === _== ==_= _ ml = === ==; === __= __= :__= === === _== __= __= l . .:u. §D‘Ju ‘ v. .. .c sm . wx. .L. ..1.. : .1L. A.; J.. Jag _, ,‘_ _. ,_. §___. ... ..“2.2.2:. __m_______________= §_________ . —._. .== ==- , _ : :.: .:. :.: : . .== =_= -.: =_-25; E. n -3.3.. . 1.: -uvvsoan-u. .,. .X O| IIlIUllII. CIl _. .: ._= _._______. .:. __. __= _:___. ______. _.: _______. =_ . L.
  93. 93. - u lg. ‘I . so. -.“-. K%¢l». .-. .. o.. 1. upon: Example 04 — shaley sand _. ==. _ . =________________ ____u_ = ==_= ==___= .._ = ______________________________. ________. ______________ , _. _.= _=_____________= __= ____u= ______= __= ___= ___= _ __. _____= =.____. __. ___. =___= _____. ___. __. ..___= __. = = === === === :_= _=_= =__= === EH= =__= ; _. ___= ____. =____. a.= ____. _______________= =___. ___= _ _= __= =_= ____= __= ==__= === ___= =__= _= =_= = = =_= === ==_= === =_= === === __= =_= =__: == === _=_= ==_= =_= ____= _=_= _=_____: ___= . _ = =_= =_= === _== === _=_E= _=_= ==_= == _” _: = = _ = _ __= ==_= _:= =_= == === =_= ==_= =_= === === === ==. =_= _= _= =_= === === :=. =__= :_= === :== === =_. _= ___= __= ___= _=;5=EE___= __E______=32. _= === =_= =._= __= ==2._= =_= ==_= =_= === _. . _.________= ..= E__. ___. =_= ==_= =_= === _=__= == E . .E__. __. E_. _=_= _.= ____= ____: _=_= =___= __= =: _ = __= =_= :.= ______= ==EE: _.. =____= =_= _=_ W ___= =_____= E___= _=_= ==_= _=__= =__= _____= = = __= =_= _=E___= _== === ==_= =____= =_= _= m _ _. _== =.__. a_____. _=_______________a: _=______= _ = === =_= =_= __= __= __= =______= =_= === _== _ = === =.= ==_= __. === === === === ==_= ==_ . =.= ._. E_Eu_. ..E. :2== =_= =_= ==_= _=_= == . E. .________= =____. __. __= ... ____= __§__= E_aa_ . =______= ___: m___. __= __. =__= _.__. _== ___= _=. =_ = === =_= =:= ==_= =_= =_= === =___= __= == m_. __. ... _.. _.. u._ no-ouwwvwoo u um» "‘#2L.8’-‘§". “r'. ".°"v "' FWLEO IWIPILFV OD [G10
  94. 94. Example 9 — Complex Lithology 6.» Identify all the lithology changes in the section. » Identify any HC zones in the example and calculate Sw for each zone. a Estimate if the HC intervals are productive and what they might produce (gas, oil, water? ) and why. we Identify any rock type changes from a porosity standpoint and give reasons for your analysis. C
  95. 95. Example 9 - DISFL-CNL-LDT-BHC-GR Frobisher Fm. - Steelman Sask. , Rw = 0.05 at FT NUSFL . _ _. ___. .,. __. &_. _n. z_______. ,___z_ _____ . . i am E, z__%_ as E n2mm____. m___ = w+$: zfi 3 t%. _"_. _____t__ : ..__. ._. _é. i . ._= .___s_ _____ ______________ __. z______ mm E fin . . __________= ______. _ 2 H1--- _: . _ _= ___ = _= _ _* .3 __. _ . .'. ‘!‘AF“. ..’. . . ... --. ----~--~. -.5-5‘--‘n"Q"! --~~-v---------'4;s_'; ‘L' _ z Vii st, 9 3 i cocoa’? Iwuujt -. .t. A.t. .snnn-9.. -- 0.0 . “‘, ... ... :.n. s. .1 awao; _‘6.¢. .. . E. #36‘ m= =_ _= ==¢= _=____= === _= __ = ==_= mu wgaggggé = :_w éfififiggfisrggm W___£wmm“", Mm_______________ ___. .._? _____w_“n. A . .u. ,.£u_. ... u.. .. .5.. . . _.. . s3. . . . %e§%§§§g§$_t ____. SQA. JLfIB_. l____
  96. 96. a LOGGING «s Sequences of Log-Interpretation 1 PUILOGS IN DEPTH with mlemnce Log 2 ZONES l%~l'llFlCA'lI0-N 3 LOGS CORREIZTIOHS hole eiiocl, bed eifecl. .. 4 RN |3€Il3R$; '§ll~lA1lOi‘~l 5 RESISTIVITY PROFILE deep of imestigalion 8 Vsh D! ;TB2i3.'HHA'l'l0l~l 1 PGROSITY CORRECTION due lovsh a Phi_'l CALCULA‘ll0N 3. monoc/ muons cmwnv 9 cALcm_xnoa or S“- with Phi_1 10 PO-ROSITY CORRECTION due to hydrocarbons gravity 11 FINAL $1 CAI. CU‘Lo'l10<N
  97. 97. o LOGGING o SINCE 1990 TWO MAIN INOVA TIONS 2 . MWD: measurement while drilling o Imaging System (MAXIS-500), with new generation of tools o 2004: . Now the must is the optical-fiber (operational in well monitoring).
  98. 98. 6 Currently used, especialy in high deviated wells (60° to 90°). With MWD to pilot the well is possible (Azimut, dip, Rt, GR, Rhob-Neutron). To reach the target but also to stay in the pay zone for an horizontal well. Resistivity measurement ahead the bit allows to optimize the cofing{
  99. 99. e NOW WITH THE IMAGER SYSTEM (MAXIS-500) THE LAST GENERATION OF TOOLS IS CURRENTLY USED: at COMBO: Minimize the number of runs at - AIT: Array- Induction-lmager 5 resistivities curves (R investigation of 10, 20, 30, so inches) Useful for lateral heterogeneities, thin beds, colored representation. e - CMR: Combinable-Magnetic-Resonance is Pore distribution and efficient porosity (concerning mobile fluid)
  100. 100. 2-4 RESERVOIR CHARACTERISATION/ LOG CMR: combinable magnetic resonance (nuclear resonance): The first magnetic field induced give an orientation to the protons (nucleus of hydrogen). the second magnetic field induced modify the direction of the protons. When the second field is stopped there is a re-alignement with the direction induced with the first field giving an electrical signal. The more the porous network is small, the more decay time is fast. efficient porosity lcroscopic Capillary porosity porosity Clay bond water (V sh) lrreductible water (Swl) Inoveable fluids (Sw+So) logt(ms)
  101. 101. 2-4 RESERVOIR CHARACTERISATION/ LOGGING o - DSI: Dipole-Shear-Sonic-Imager, more than the BHC . Waves P, S, Stoneleyg mechanical rocks properties; useful for seismic studies (Amplitude Versus Offset). o - FMI: Fullbore-Formation-Microimager 0 192 curves of microresistivities covering 80% of the borehole . Sedimentological studies, thin beds, fractures, core orientation, well geometry and direction.
  102. 102. 2-4 RESERV()IR CHARACTERISATION/ LOGGING III] - - MDT: Modular-Formation-Dynamic-Tester o Pressures, sampling (PVT); used to define gradients, fluids contacts, vertical heterogeneities, qualitative permeabilities profile. - pre-tests - sampling -special purposes
  103. 103. 2-4 RESERVOIR CHARACTERISATION/ MDT o PRE-TES TS: INITIAL PRESSURE AND DEPLETION : fundamental for model history and test simulation. GRADIENT: fluid determination, contact. transmissivity barrier: shift in the trend. MOBILITY: characterize reservoir heterogeneities, cut-off: dynamic.
  104. 104. 2-4 RESERVOIR CHARACTERISATION / MDT Gradients lnterpretati on (M DT Pretests)
  105. 105. Protondour (MINI! ) 2-4 RESERVOIR CHARACTERISATION/ MDT I iprtssiouzrfimot sun PUTS new-i<ossA H lflabflh - IO n()Ir. Po. nu! pom IMSMI) .3000 “"Iuso‘uu as volcano, MU I 0:1‘ I V l | ‘ , 1 3 , I I ‘ .3050 4.5"‘ ‘ . J | . 'V I - - ( ‘ l E . moo I } -2 ' ' -3150 ; ~ . 4200 I NKFHM A mu my -3350 A M010] .3300 I 0 Nltfhol 9 NIT! LII Quail! -3350 9 with on; I Nxiwv -1400 I you H1) .1450 . _; l— I I "9. ' -3590 ‘ -‘ ~ ' ' 100 392 394 396 398 400 402 404 406 400 410 412 414 Pnsalon (bar aha. )
  106. 106. Dvnm . ‘mwM$Ll 26543 I700 17'4- 2800 1650 2W0 HQ 300-; }D'>C‘ '*. - f, ‘2r'&cr_ _ , I E 001 ma-105 la» 2394.5 m(M$L woc M3401 Q 2908 in/ MSL M5402 @ 2906 mMsL TAB-10-I zsoa rn. MSL TABIYEH FIELD RFT HISTORY GOC TAB-105 @ Z358 nuMSL , , .3 . . M, ‘7 J . »r; ‘:‘ ‘V , .. 3 "E I re I >12 , s »_ 99 - - - - » - v- . ... ..). . . '._ "1 ‘A I ' .0 A ‘-K I ‘ O3 <; l:. : . ._ am. 4'30 nc I"ro| 'u-r| - yr. .. 3 IAT3-101’ . me-102 , ~. TAB-103 . me-104 . ma-105 CONTACTS 8- FLUIDS DETERMINATION ‘_ 0 Goc TAB-101 , -gr, 2360 m'MSL x r‘-'. n,
  107. 107. 2-4 RESERVOIR CHARACTERISATION/ MDT . SAMPLING OBJECTIVES: o Fluid determination (chambers). o Formation water sampling (Rw). o PVT sampling: o Several sampling along the hydrocarbon column to verify if it is the evolution of the same fluid or different reservoirs. c To compare with cased hole sampling.
  108. 108. 'fi 1 1 ‘V - ~ 1‘ '7 I ' x f . V . w. ‘ —< 4 —. . g. ‘ . .- _ I » . 4 . ‘ n__l' 4 F / ‘cu _. I 4‘ A ' gu 4000 turn: Porn 3:! won 50-9.! P-MS! on on on ncsurvons c-Swcau us nu; -as-ucr A usu fl} -<3 ans-toucourr 3300 ~u{n-mks 4 5°00 cnm<: AL| 5', POINT o. u‘ a $2500 3 W In III II) C I _ a 2 ‘E 2000 3 3 M) I u: u u 8 o 9: I500 E E I000 I A. I I 500 250 300 -r I00 I50 200 0 50 RESERVOIR TEMPERATURE. Fig. 2.3. | ’rc. ~.-ure-turxxporuturv ph:1.<<- (lhgrsm of a. n. -.~cn'oir lluid. 350
  109. 109. 2-4 RESERVOIR CIIARACTERISATION/ MDT 0 Optional modules : — Tandem probe system: 0 anisotropic formation (vertical and horizontal permeabilities): 2 probes are diametrically opposite to each other and 3rd probe is 2.3ft upper . 0 Vertical interference with a distance between probes of: o 10,3ft or 8ft or 2.3ft. — Dual packer module: 0 Over 3ft open hole interval: laminated, shaly, fractured, unconsolidated, low permeability reservoir.
  110. 110. 2-4 RESERVOIR CHARACTERISATION/ MDT . Field cases: OWC contact from pretest = => FWC = => Pc = 0. OWC from logs = => transition zone included. Extrapolated contact (L| BYA_B3). Pretests in a in-fill well: Depletion in a multi-layered reservoir (COBO- PAMBU Horizontal profile pressure in a field in production (ALK). 0 Vertical flow barrier (NKSM).
  111. 111. 2-5 RESERVOIR CHARACTERISATIONITEST 4?: - Wells to be Tested - Each Exploration / Appraisal Well. - Each development well at their start-up. - When a problem appears on a well : WHP Dropping-Down, VVOR Increasing etc. .. - Periodically : To follow-up the average pressure of the drainage area and the dynamical reservoir characteristics evolution
  112. 112. 2-5 RESERVOIR CHARACTERISATION/ TEST Three Types of Test : Initial test (measurement in bottom hole and surface) : DST in exploration and appraisal wells With the definitive completion during the field development Periodical test (measurement in bottom hole and surface) : During the life of a well, to follow the evolution of the dynamical characteristics Surface test (measurement at surface) : To follow the production rates and surface pressures, temperatures, rates.
  113. 113. 2-5 RESERVUIR (, 'HARA(, "I'ERl5A'I'IUN/ 'I'ILSI' Initial Tests : Objectives 1- Initial Reservoir Pressure 2- Reservoir Dynamic Characteristics Determination: 2-1 Effective Horizontal Permeability (it is possible to determine kv in certain cases ) 2-2 Productivity Index 2-3 Skin effect 3- Geometry, barriers 4- Bottom hole and Surface Sampling
  114. 114. 2-5 RESERVOIR CHARACTERISATIONI TEST PRINCIPLE: - Rates variations induce a pressure regime perturbation in the compressive zone. -The measure of the evolution of the pressure versus time and its interpretation give information about the reservoir and the well. - Diffusivity Law (DARCY) is used: Topic - Tests
  115. 115. 2-5 RESERVOIR CIIARACTERISATIONI TES 1- Initial Pressure » _«. -, The reservoir initial pressure must be corrected in depth (between the gang‘-: a' '. i"“” the middle of the perforation). To match the simulation of the history of the test, initial pressure is necessary. 2- Permeability The Test interpretation determines the average permeability (k horizontal) in the compressive zone investigated by the well. Depending on the value of kh/ in and the test duration, the radius investigated is variable (for example it can reach 20m for bad reservoir characteristics, until l000m for very good one). In some case the vertical permeability (kv) can be evaluated (partial penetration, bi-layer).
  116. 116. 2-5 RESERVOIR CHARACTERISATIONI TEST 3- PI Productivity Index = Q / dP (simplified formula) i. e Rate / (Reservoir Pressure — Flowing Pressure) Ex: l000m3/d / (2S0bars—200bars) = 20 m3/d/ b The Productivity Index involves : - the formation and fluid characteristics (porosity/ permeability network, viscosity) - plus the Skin Effect (well damage) dP (IP) = dPl (formation) + dP2 (Skin) . o a
  117. 117. 2-5 RESERVOIR CHARACTERISATlON/ TEST 5- 4- Skin Effect The Skin effect is a pressure loss concerning the perforations, the cemented annulus and the invaded zone , it can be: S > 0 if the well is damaged (drilling, perforations, gravel pack, geometrical skin etc. ..) S = 0 if the well is not damaged S < 0 if the well is better (after stimulation, good perforations performance etc. ..) The (IF corresponding to the Skin effect is deducted from the Darc_v’s Law. Knowing the dl’ due to the Skin, it is possible to deduce what would he the gain-rate if the Skin were S=0 (after treatment for exemple).
  118. 118. 2-5 RESERVOIR CHARACTERISATIONI 5- Geometry and reservoir flow model (7 The Interpretation of the Derivative Pressure Signature allows: To determine the distance from the well to : - a fault, secant faults if any. - the borders of a channel. - a limit with a constant pressure if any (active aquifer, gas cap). - etc. .. To determine if there is a fractured network, or a bi-layers reservoir, or a partial penetration etc. . .
  119. 119. 2-6 RESERVOIR CHARACTERISATION SAMPL 6- Sampling To get a representative fluid sample is a very difficult operation, however it is one of the essential acquisition in the field exploitation. During each main flow period, Surface Sampling must be performed at the separator. After the main Build-Up, a Bottom Hole Sampling (BHS) is carried out using a small choke (to prevent to flow the well under the bubble point pressure). Tnslmng Spo-tjtai Ql’| '._IV~". *'_'! Agip
  120. 120. 2-6 RESERVOIR CHARACTERISATION TEST(FLUIDS) Main characteristics of the fluids: The thermodynamical study is performed @ Reservoir Pressure and Temperature: Bubble Point Pressure (Pb) Specific gravity (do), and its curve do = f (P, T) Viscosity (no), and its curve po = f (P, T) Rs, and its curve Rs = f (P, T) FVF formation volume factor (Bo, Ba). and its curve B0 = f (P, T) Oil and gas Compressibility (Co, Cg) Gas molar analysis; N2; CO2; H28; Cl, C2, etc. ..
  121. 121. PLT Prod 1ici'ioI1-Itoggiiig, W Irv‘? : 1:3‘? 1- To establish the production profile (or injection) for each set of perforations. -1-i_ 4 2- Nature and Production Ratio for each fluid. 3- PI, permeability and Skin for each zone perforated. 4- To get the initial production profile, to be compared with the next ones (evolution). Pro(lucti0n-Logging, When‘? : - During the DST (Exploration and appraisal wells), - When problems occur (cross-flow, water entries, gas entries etc. ..) Product‘ion-Logging, I-low‘? : - PLT: flowmeter, gradiomanometer, manometer, thermometer, caliper, gamma-ray. - Neutron : to follow the Gas-Oil-Contact evolution. - RST or TDT (neutron pulsed) : to follow the water saturation and contact evolution.
  122. 122. c — Day to day well control TUBING FLOW REGIMES ‘T Single-phase Bubble Flow direction V. l E 1 . Annular
  123. 123. PLT «TOOLS ‘ Wire-line ‘ Memory (MLT) ° Horizontal well: coiled tubing «TOOLS e Flowmeters ea Densimeter e Thermometer 6 Pressure «iv Capacitance «2 Pulsed neutron
  124. 124. PLT ’ pg. Capacity Level Analysis The more often a reservoir is not homogeneous; connected layers are perforated and each one gets its own reservoir characteristics. The Production Logging (option Multi-Layers) allows to calculate the dynamical characteristics for each layer. Layer-2: S 1:, JPl; ‘z[ Layer-3: lo, 5:. Pl: § I v i i 1 ' W I I- | } I
  125. 125. -1° Well shut in: ' - go directly to the bottom to get the not perturbated temperature (gradient below perf). ' Down and Up V0.1 Line zero flow ' Down and Up V0.2 } '2° Open the well at Q1 : ' - 3 passes UP and Down with V1.1; V1.2; V1.3 ' - step between each set of perfos (V1=0). '3° Open the well at Q2: ' - 3 passes UP and Down with V2.1; V2.2; V2.3 ' - step between each set of perf (V2=0). 'Nota: do not forget gradient in the column! PLT . . MLT configuration s t f rf After N°1 stop above the last set of perfos, open the well at Q1, record the draw-down. After N°2, stop between set-2 and set-3 change choke (Reneau technic) record the draw-down (Q2>Q1). After N°3 stop above the perfos. shut the well, record the BU Nota: the derivative in real time give you the duration of each BU & DD.
  126. 126. n-. ~—. h 1 Iron A 1.-cm» 1 Mnrulo 1 lmvl Immu u ‘at: l. Ln. -.m. I wnv-tut-ui a. Jaw-«tr . ‘ I-,1 ~51 . ' i : mg. ,i . ,"al v — It-sultan nucvm-ui. -n vu lira iurhn-an IE4 Iunvywmsm AN-rmvlvr ~ . |-mutan- ' 7 Va- . '-$0
  127. 127. CNL: To follow the evolution of the GOC or GW C in time. TDT and RST: Mainly to follow the evolution of the W0C in time, and Sw in the oil bearing zone. CNL TDT RST ‘i ‘ ' 2‘ -5. ‘4' ‘ ___ ' s ' - L’, T H: _ Z, ,1 -1; -, 3 , _ 5 . :_‘ , , ’_, .___ Si- ‘-> — ~ 7- {:1
  128. 128. SA. 'lPI. .ING: During PLT, TDT. C. ’l. acquisition it is recommended time to time to pick up a Bottom hole sampling to analyse. Do not forget to record gradients into the tubing in static and dynamic conditions to match the model.

×