Electrical Field of a Long Wire © Frits F.M. de Mul
E -field of a long wire Question : Calculate  E -field in arbitrary points outside the wire. Available: A thin wire, infin...
E -field of a long wire <ul><li>Analysis and symmetry </li></ul><ul><li>Approach to solution </li></ul><ul><li>Calculation...
Analysis and Symmetry 1.   Charge distribution:   C/m] 2.  Coordinate axes: Z-axis // wire 3.  Symmetry:  cylinder 4. ...
Analysis, field build-up 1. XYZ-axes 2. Point P on Y-axis P 3. all  Q i ’ s at  z i   contribute  E i   to  E  in P 4.  E ...
Approach to solution 1. Distributed charges 3.  dQ =   .dz z Z Y X P dQ  in  dz  at  z 2.  dE  e r r 4.  y-  and  z - com...
Calculations (1) r e r y P 
Calculations (2) r y P a similar calculation:
Conclusions y P | E    ~ 1/ y P cylinder symmetry E
Appendix: angular integration (1) r y P 
Appendix: angular integration (2) integration over   from -  to  the end r y P 
Upcoming SlideShare
Loading in …5
×

Electric field of a wire

8,536 views

Published on

University Electromagnetism:
Electric field of a charged thin wire

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
8,536
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
19
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Electric field of a wire

  1. 1. Electrical Field of a Long Wire © Frits F.M. de Mul
  2. 2. E -field of a long wire Question : Calculate E -field in arbitrary points outside the wire. Available: A thin wire, infinitely long, carrying charge density  [C/m]
  3. 3. E -field of a long wire <ul><li>Analysis and symmetry </li></ul><ul><li>Approach to solution </li></ul><ul><li>Calculations </li></ul><ul><li>Conclusions </li></ul><ul><li>Appendix: angular integration </li></ul>
  4. 4. Analysis and Symmetry 1. Charge distribution:   C/m] 2. Coordinate axes: Z-axis // wire 3. Symmetry: cylinder 4. Cylinder coordinates: r, z  Z X Y e r e  e z
  5. 5. Analysis, field build-up 1. XYZ-axes 2. Point P on Y-axis P 3. all Q i ’ s at z i contribute E i to E in P 4. E i,x ,E i,y , E i,z 6. expect: E z =  E i,z = 0, to be checked !! Z Y X E i z i Q i at z i E i,y E i,z 5. all E i,x = 0 !!
  6. 6. Approach to solution 1. Distributed charges 3. dQ =  .dz z Z Y X P dQ in dz at z 2. dE e r r 4. y- and z - components dE y dE z 5.
  7. 7. Calculations (1) r e r y P 
  8. 8. Calculations (2) r y P a similar calculation:
  9. 9. Conclusions y P | E  ~ 1/ y P cylinder symmetry E
  10. 10. Appendix: angular integration (1) r y P 
  11. 11. Appendix: angular integration (2) integration over  from -  to  the end r y P 

×