Efficient Pagination Using MySQL

E
Evan WeaverTwitter, Inc.
Efficient Pagination Using MySQL
                   Surat Singh Bhati (surat@yahoo-inc.com)
                    Rick James (rjames@yahoo-inc.com)


                               Yahoo Inc


Percona Performance Conference 2009
Outline

  1. Overview
     –    Common pagination UI pattern
     – Sample table and typical solution using OFFSET
     – Techniques to avoid large OFFSET
     – Performance comparison
     – Concerns




                                         -2-
Common Patterns




                  -3-
Basics


    First step toward having efficient pagination over large data set

     – Use index to filter rows (resolve WHERE)
     – Use same index to return rows in sorted order (resolve ORDER)




    Step zero
     – http://dev.mysql.com/doc/refman/5.1/en/mysql-indexes.html
     – http://dev.mysql.com/doc/refman/5.1/en/order-by-optimization.html
     – http://dev.mysql.com/doc/refman/5.1/en/limit-optimization.html




                                        -4-
Using Index


  KEY a_b_c (a, b, c)

  ORDER may get resolved using Index
       –   ORDER BY a
       –   ORDER BY a,b
       –   ORDER BY a, b, c
       –   ORDER BY a DESC, b DESC, c DESC


  WHERE and ORDER both resolved using index:
       –   WHERE a = const ORDER BY b, c
       –   WHERE a = const AND b = const ORDER BY c
       –   WHERE a = const     ORDER BY b, c
       –   WHERE a = const AND b > const ORDER BY b, c

  ORDER will not get resolved uisng index (file sort)
       –   ORDER BY a ASC, b DESC, c DESC /* mixed sort direction */
       –   WHERE g = const ORDER BY b, c        /* a prefix is missing */
       –   WHERE a = const ORDER BY c           /* b is missing */
       –   WHERE a = const ORDER BY a, d        /* d is not part of index */
                                               -5-
Sample Schema
  CREATE TABLE `message` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `title` varchar(255) COLLATE utf8_unicode_ci NOT NULL,
    `user_id` int(11) NOT NULL,
    `content` text COLLATE utf8_unicode_ci NOT NULL,
    `create_time` int(11) NOT NULL,
    `thumbs_up` int(11) NOT NULL DEFAULT '0', /* Vote Count */
    PRIMARY KEY (`id`),
    KEY `thumbs_up_key` (`thumbs_up`,`id`)
  ) ENGINE=InnoDB

   mysql> show table status like 'message' G
           Engine: InnoDB
          Version: 10
       Row_format: Compact
             Rows: 50000040    /* 50 Million */
   Avg_row_length: 565
      Data_length: 28273803264 /* 26 GB */
     Index_length: 789577728   /* 753 MB */
        Data_free: 6291456
      Create_time: 2009-04-20 13:30:45

  Two use case:
  • Paginate by time, recent message one page one
  • Paginate by thumps_up, largest value on page one
                                          -6-
Typical Query

  1. Get the total records
     SELECT count(*) FROM message


  2. Get current page
     SELECT * FROM message
     ORDER BY id DESC LIMIT 0, 20


  •   http://domain.com/message?page=1
              • ORDER BY id DESC LIMIT 0,                 20

  •   http://domain.com/message?page=2
              • ORDER BY id DESC LIMIT 20,                 20

  •   http://domain.com/message?page=3
              • ORDER BY id DESC LIMIT 40,                 20


  Note: id is auto_increment, same as create_time order, no need to create index on create_time, save space



        –                                           -7-
Explain


  mysql> explain SELECT * FROM message
         ORDER BY id DESC
         LIMIT 10000, 20G
  ***************** 1. row **************
             id: 1
    select_type: SIMPLE
          table: message
           type: index
  possible_keys: NULL
            key: PRIMARY
        key_len: 4
            ref: NULL
           rows: 10020
          Extra:
  1 row in set (0.00 sec)
     – it can read rows using index scan and execution will stop as soon as it finds
       required rows.
     – LIMIT 10000, 20 means it has to read 10020 and throw away 10000 rows, then
       return next 20 rows.


                                          -8-
Performance Implications

     – Larger OFFSET is going to increase active data set, MySQL has to bring data
       in memory that is never returned to caller.
     – Performance issue is more visible when your have database that can't fit in
       main memory.
     – Small percentage of request with large OFFSET would be able to hit disk I/O
       Disk I/O bottleneck
     – In order to display “21 to 40 of 1000,000” , some one has to count 1000,000
       rows.




                                         -9-
Simple Solution

     – Do not display total records, does user really care?



     – Do not let user go to deep pages, redirect him
       http://en.wikipedia.org/wiki/Internet_addiction_disorder after certain number of
       pages




                                          - 10 -
Avoid Count(*)


  1. Never display total messages, let user see more message by clicking
     'next'



  2. Do not count on every request, cache it, display stale count, user do not
     care about 324533 v/s 324633


  3. Display 41 to 80 of Thousands


  4. Use pre calculated count, increment/decrement value as insert/delete
     happens.




                                       - 11 -
Solution to avoid offset

  1. Change User Interface
      – No direct jumps to Nth page



  2. LIMIT N is fine, Do not use LIMIT M,N
      – Provide extra clue about from where to start given page
      – Find the desired records using more restricted WHERE using given clue and
        ORDER BY and LIMIT N without OFFSET)




                                         - 12 -
Find the clue

   150
   111
   102                       Page One
   101
   100   <a href=”/page=2;last_seen=100;dir=next>Next</a>

   98    <a href=”/page=1;last_seen=98;dir=prev>Prev</a>
   97
   96                        Page Two
   95
   94    <a href=”/page=3;last_seen=94;dir=next>Next</a>

   93    <a href=”/page=3;last_seen=93;dir=prev>Prev</a>
   92
   91                         Page Three
   90
   89    <a href=”/page=4;last_seen=89;dir=prev>Next</a>




                                   - 13 -
Solution using clue

  Next Page:
  http://domain.com/forum?page=2&last_seen=100&dir=next

           WHERE id < 100 /* last_seen *
           ORDER BY id DESC LIMIT $page_size /* No OFFSET*/


  Prev Page:
  http://domain.com/forum?page=1&last_seen=98&dir=prev

           WHERE id > 98 /* last_seen *
           ORDER BY id ASC LIMIT $page_size /* No OFFSET*/


           Reverse given 10 rows before sending to user


                                 - 14 -
Explain

  mysql> explain
         SELECT * FROM message
         WHERE id < '49999961'
         ORDER BY id DESC LIMIT 20 G
  *************************** 1. row ***************************
             id: 1
    select_type: SIMPLE
          table: message
           type: range
  possible_keys: PRIMARY
            key: PRIMARY
        key_len: 4
            ref: NULL
           Rows: 25000020 /* ignore this */
          Extra: Using where
  1 row in set (0.00 sec)




                                   - 15 -
What about order by non unique values?


                         99
                         99
                         98    Page One
                         98
                         98
                         98
                         98
                         97    Page Two
                         97
                         10
  We can't do:
            WHERE thumbs_up < 98
            ORDER BY thumbs_up DESC /* It will return few seen rows */

  Can we say this:
            WHERE thumbs_up <= 98
            AND <extra_con>
            ORDER BY thumbs_up DESC

                                      - 16 -
Add more condition

  •   Consider thumbs_up as major number
       – if we have additional minor number, we can use combination of major & minor
         as extra condition




  •   Find additional column (minor number)
       – we can use id primary key as minor number




                                          - 17 -
Solution
                                     First Page
  SELECT thumbs_up, id
  FROM message
  ORDER BY thumbs_up DESC, id DESC
  LIMIT $page_size

  +-----------+----+
  | thumbs_up | id |
  +-----------+----+
  |        99 | 14 |
  |        99 | 2 |
  |        98 | 18 |
  |        98 | 15 |
  |        98 | 13 |
  +-----------+----+
                                     Next Page
  SELECT thumbs_up, id
  FROM message
  WHERE thumbs_up <= 98 AND (id < 13 OR thumbs_up < 98)
  ORDER BY thumbs_up DESC, id DESC
  LIMIT $page_size

  +-----------+----+
  | thumbs_up | id |
  +-----------+----+
  |        98 | 10 |
  |        98 | 6 |
  |        97 | 17 |
                                        - 18 -
Make it better..
   Query:


   SELECT * FROM message
   WHERE thumbs_up <= 98
            AND (id < 13 OR thumbs_up < 98)
   ORDER BY thumbs_up DESC, id DESC
   LIMIT 20


   Can be written as:


   SELECT m2.* FROM message m1, message m2
   WHERE m1.id = m2.id
            AND m1.thumbs_up <= 98
            AND (m1.id < 13 OR m1.thumbs_up < 98)
   ORDER BY m1.thumbs_up DESC, m1.id DESC
   LIMIT 20;

                                     - 19 -
Explain

  *************************** 1. row ***************************
             id: 1
    select_type: SIMPLE
          table: m1
           type: range
  possible_keys: PRIMARY,thumbs_up_key
            key: thumbs_up_key /* (thumbs_up,id) */
        key_len: 4
            ref: NULL
           Rows: 25000020 /*ignore this, we will read just 20 rows*/
          Extra: Using where; Using index /* Cover */
  *************************** 2. row ***************************
             id: 1
    select_type: SIMPLE
          table: m2
           type: eq_ref
  possible_keys: PRIMARY
            key: PRIMARY
        key_len: 4
            ref: forum.m1.id
           rows: 1
          Extra:

                                   - 20 -
Performance Gain (Primary Key Order)




                       - 21 -
Performance Gain (Secondary Key Order)




                      - 22 -
Throughput Gain


 •   Throughput Gain while hitting first 30 pages:

      – Using LIMIT OFFSET, N
          • 600 query/sec




      – Using LIMIT N (no OFFSET)
          • 3.7k query/sec




                                        - 23 -
Bonus Point

  Product issue with LIMIT M, N


     User is reading a page, in the mean time some records may be added to
     previous page.


     Due to insert/delete pages records are going to move forward/backward
     as rolling window:
      – User is reading messages on 4th page
      – While he was reading, one new message posted (it would be there on page
        one), all pages are going to move one message to next page.
      – User Clicks on Page 5
      – One message from page got pushed forward on page 5, user has to read it
        again


  No such issue with news approach

                                        - 24 -
Drawback

  Search Engine Optimization Expert says:
  Let bot reach all you pages with fewer number of deep dive


  Two Solutions:
  •   Read extra rows
       – Read extra rows in advance and construct links for few previous & next pages


  •   Use small offset
       – Do not read extra rows in advance, just add links for few past & next pages
         with required offset & last_seen_id on current page
       – Do query using new approach with small offset to display desired page
       –
                             file:///Users/surat/Desktop/Picture%2043.png




  Additional concern: Dynamic urls, last_seen is not constant over time.
                                                                            - 25 -
Thanks




  - 26 -
1 of 26

Recommended

Efficient Pagination Using MySQL by
Efficient Pagination Using MySQLEfficient Pagination Using MySQL
Efficient Pagination Using MySQLSurat Singh Bhati
26.7K views26 slides
Practical Partitioning in Production with Postgres by
Practical Partitioning in Production with PostgresPractical Partitioning in Production with Postgres
Practical Partitioning in Production with PostgresEDB
356 views34 slides
Doubly Linked List || Operations || Algorithms by
Doubly Linked List || Operations || AlgorithmsDoubly Linked List || Operations || Algorithms
Doubly Linked List || Operations || AlgorithmsShubham Sharma
29.8K views19 slides
ClickHouse Keeper by
ClickHouse KeeperClickHouse Keeper
ClickHouse KeeperAltinity Ltd
1.9K views52 slides
The PostgreSQL Query Planner by
The PostgreSQL Query PlannerThe PostgreSQL Query Planner
The PostgreSQL Query PlannerCommand Prompt., Inc
8.5K views32 slides
358 33 powerpoint-slides_13-graphs_chapter-13 by
358 33 powerpoint-slides_13-graphs_chapter-13358 33 powerpoint-slides_13-graphs_chapter-13
358 33 powerpoint-slides_13-graphs_chapter-13sumitbardhan
3.9K views41 slides

More Related Content

What's hot

High Availability PostgreSQL with Zalando Patroni by
High Availability PostgreSQL with Zalando PatroniHigh Availability PostgreSQL with Zalando Patroni
High Availability PostgreSQL with Zalando PatroniZalando Technology
25K views48 slides
Let's scale-out PostgreSQL using Citus (English) by
Let's scale-out PostgreSQL using Citus (English)Let's scale-out PostgreSQL using Citus (English)
Let's scale-out PostgreSQL using Citus (English)Noriyoshi Shinoda
3.1K views47 slides
How to Design Indexes, Really by
How to Design Indexes, ReallyHow to Design Indexes, Really
How to Design Indexes, ReallyKarwin Software Solutions LLC
134.6K views72 slides
Solving PostgreSQL wicked problems by
Solving PostgreSQL wicked problemsSolving PostgreSQL wicked problems
Solving PostgreSQL wicked problemsAlexander Korotkov
4K views61 slides
MySQL 5.5 Guide to InnoDB Status by
MySQL 5.5 Guide to InnoDB StatusMySQL 5.5 Guide to InnoDB Status
MySQL 5.5 Guide to InnoDB StatusKarwin Software Solutions LLC
20.7K views46 slides
Advanced MySQL Query Tuning by
Advanced MySQL Query TuningAdvanced MySQL Query Tuning
Advanced MySQL Query TuningAlexander Rubin
1.2K views67 slides

What's hot(20)

High Availability PostgreSQL with Zalando Patroni by Zalando Technology
High Availability PostgreSQL with Zalando PatroniHigh Availability PostgreSQL with Zalando Patroni
High Availability PostgreSQL with Zalando Patroni
Zalando Technology25K views
Let's scale-out PostgreSQL using Citus (English) by Noriyoshi Shinoda
Let's scale-out PostgreSQL using Citus (English)Let's scale-out PostgreSQL using Citus (English)
Let's scale-out PostgreSQL using Citus (English)
Noriyoshi Shinoda3.1K views
MySQL Advanced Administrator 2021 - 네오클로바 by NeoClova
MySQL Advanced Administrator 2021 - 네오클로바MySQL Advanced Administrator 2021 - 네오클로바
MySQL Advanced Administrator 2021 - 네오클로바
NeoClova583 views
PostGreSQL Performance Tuning by Maven Logix
PostGreSQL Performance TuningPostGreSQL Performance Tuning
PostGreSQL Performance Tuning
Maven Logix 601 views
Introduction to MongoDB by MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
MongoDB7.2K views
The MySQL Query Optimizer Explained Through Optimizer Trace by oysteing
The MySQL Query Optimizer Explained Through Optimizer TraceThe MySQL Query Optimizer Explained Through Optimizer Trace
The MySQL Query Optimizer Explained Through Optimizer Trace
oysteing1K views
OpenGurukul : Database : PostgreSQL by Open Gurukul
OpenGurukul : Database : PostgreSQLOpenGurukul : Database : PostgreSQL
OpenGurukul : Database : PostgreSQL
Open Gurukul2.3K views
ClickHouse tips and tricks. Webinar slides. By Robert Hodges, Altinity CEO by Altinity Ltd
ClickHouse tips and tricks. Webinar slides. By Robert Hodges, Altinity CEOClickHouse tips and tricks. Webinar slides. By Robert Hodges, Altinity CEO
ClickHouse tips and tricks. Webinar slides. By Robert Hodges, Altinity CEO
Altinity Ltd1.3K views
Data Structure and Algorithms Heaps and Trees by ManishPrajapati78
Data Structure and Algorithms Heaps and TreesData Structure and Algorithms Heaps and Trees
Data Structure and Algorithms Heaps and Trees
A Practical Introduction to Handling Log Data in ClickHouse, by Robert Hodges... by Altinity Ltd
A Practical Introduction to Handling Log Data in ClickHouse, by Robert Hodges...A Practical Introduction to Handling Log Data in ClickHouse, by Robert Hodges...
A Practical Introduction to Handling Log Data in ClickHouse, by Robert Hodges...
Altinity Ltd3.7K views
Reverse of DPAPI - BlackHat DC 2010 by jmichel.p
Reverse of DPAPI - BlackHat DC 2010Reverse of DPAPI - BlackHat DC 2010
Reverse of DPAPI - BlackHat DC 2010
jmichel.p3.7K views
Conan.io - The C/C++ package manager for Developers by Uilian Ries
Conan.io - The C/C++ package manager for DevelopersConan.io - The C/C++ package manager for Developers
Conan.io - The C/C++ package manager for Developers
Uilian Ries3.9K views
Indexing with MongoDB by MongoDB
Indexing with MongoDBIndexing with MongoDB
Indexing with MongoDB
MongoDB12.6K views

Viewers also liked

Pagination Done the Right Way by
Pagination Done the Right WayPagination Done the Right Way
Pagination Done the Right WayMarkus Winand
415.3K views46 slides
Modern SQL in Open Source and Commercial Databases by
Modern SQL in Open Source and Commercial DatabasesModern SQL in Open Source and Commercial Databases
Modern SQL in Open Source and Commercial DatabasesMarkus Winand
450.8K views174 slides
A FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARD by
A FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARDA FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARD
A FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARDTotango
4.7K views28 slides
[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니? by
[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니?[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니?
[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니?GangSeok Lee
4.2K views41 slides
SQL Transactions - What they are good for and how they work by
SQL Transactions - What they are good for and how they workSQL Transactions - What they are good for and how they work
SQL Transactions - What they are good for and how they workMarkus Winand
33.9K views72 slides
[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼 by
[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼
[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼GangSeok Lee
1.5K views47 slides

Viewers also liked(10)

Pagination Done the Right Way by Markus Winand
Pagination Done the Right WayPagination Done the Right Way
Pagination Done the Right Way
Markus Winand415.3K views
Modern SQL in Open Source and Commercial Databases by Markus Winand
Modern SQL in Open Source and Commercial DatabasesModern SQL in Open Source and Commercial Databases
Modern SQL in Open Source and Commercial Databases
Markus Winand450.8K views
A FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARD by Totango
A FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARDA FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARD
A FRAMEWORK TO BUILD A KILLER CUSTOMER SUCESS SCORECARD
Totango4.7K views
[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니? by GangSeok Lee
[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니?[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니?
[2014 CodeEngn Conference 11] 최우석 - 자바스크립트 난독화 너네 뭐니?
GangSeok Lee4.2K views
SQL Transactions - What they are good for and how they work by Markus Winand
SQL Transactions - What they are good for and how they workSQL Transactions - What they are good for and how they work
SQL Transactions - What they are good for and how they work
Markus Winand33.9K views
[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼 by GangSeok Lee
[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼
[2014 CodeEngn Conference 11] 김기홍 - 빅데이터 기반 악성코드 자동 분석 플랫폼
GangSeok Lee1.5K views
How Modern SQL Databases Come up with Algorithms that You Would Have Never Dr... by Lukas Eder
How Modern SQL Databases Come up with Algorithms that You Would Have Never Dr...How Modern SQL Databases Come up with Algorithms that You Would Have Never Dr...
How Modern SQL Databases Come up with Algorithms that You Would Have Never Dr...
Lukas Eder34.1K views
10 SQL Tricks that You Didn't Think Were Possible by Lukas Eder
10 SQL Tricks that You Didn't Think Were Possible10 SQL Tricks that You Didn't Think Were Possible
10 SQL Tricks that You Didn't Think Were Possible
Lukas Eder2.1M views
facebook architecture for 600M users by Jongyoon Choi
facebook architecture for 600M usersfacebook architecture for 600M users
facebook architecture for 600M users
Jongyoon Choi72K views
A simple example of Earned Value Management (EVM) in action by Planisware
A simple example of Earned Value Management (EVM) in actionA simple example of Earned Value Management (EVM) in action
A simple example of Earned Value Management (EVM) in action
Planisware103.4K views

Similar to Efficient Pagination Using MySQL

Covering indexes by
Covering indexesCovering indexes
Covering indexesMYXPLAIN
660 views34 slides
MySQL for business developer - Titouan BENOIT by
MySQL for business developer - Titouan BENOITMySQL for business developer - Titouan BENOIT
MySQL for business developer - Titouan BENOITTitouan BENOIT
63.3K views41 slides
Introduction into MySQL Query Tuning by
Introduction into MySQL Query TuningIntroduction into MySQL Query Tuning
Introduction into MySQL Query TuningSveta Smirnova
674 views100 slides
Optimizando MySQL by
Optimizando MySQLOptimizando MySQL
Optimizando MySQLMarcelo Altmann
1.3K views49 slides
Oracle by
OracleOracle
OracleRajeev Uppala
4.1K views111 slides
Raj mysql by
Raj mysqlRaj mysql
Raj mysqlfirstplanet
1.1K views23 slides

Similar to Efficient Pagination Using MySQL(20)

Covering indexes by MYXPLAIN
Covering indexesCovering indexes
Covering indexes
MYXPLAIN660 views
MySQL for business developer - Titouan BENOIT by Titouan BENOIT
MySQL for business developer - Titouan BENOITMySQL for business developer - Titouan BENOIT
MySQL for business developer - Titouan BENOIT
Titouan BENOIT63.3K views
Introduction into MySQL Query Tuning by Sveta Smirnova
Introduction into MySQL Query TuningIntroduction into MySQL Query Tuning
Introduction into MySQL Query Tuning
Sveta Smirnova674 views
Building an Analytic Extension to MySQL with ClickHouse and Open Source by Altinity Ltd
Building an Analytic Extension to MySQL with ClickHouse and Open SourceBuilding an Analytic Extension to MySQL with ClickHouse and Open Source
Building an Analytic Extension to MySQL with ClickHouse and Open Source
Altinity Ltd154 views
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptx by Altinity Ltd
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptxBuilding an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Building an Analytic Extension to MySQL with ClickHouse and Open Source.pptx
Altinity Ltd19 views
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku by Redis Labs
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, HerokuPostgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Postgres & Redis Sitting in a Tree- Rimas Silkaitis, Heroku
Redis Labs2.4K views
What's New In MySQL 5.6 by Abdul Manaf
What's New In MySQL 5.6What's New In MySQL 5.6
What's New In MySQL 5.6
Abdul Manaf144 views
Troubleshooting MySQL Performance by Sveta Smirnova
Troubleshooting MySQL PerformanceTroubleshooting MySQL Performance
Troubleshooting MySQL Performance
Sveta Smirnova2.1K views
Ten Reasons Why You Should Prefer PostgreSQL to MySQL by anandology
Ten Reasons Why You Should Prefer PostgreSQL to MySQLTen Reasons Why You Should Prefer PostgreSQL to MySQL
Ten Reasons Why You Should Prefer PostgreSQL to MySQL
anandology46.5K views
Beyond php - it's not (just) about the code by Wim Godden
Beyond php - it's not (just) about the codeBeyond php - it's not (just) about the code
Beyond php - it's not (just) about the code
Wim Godden957 views
Myth busters - performance tuning 101 2007 by paulguerin
Myth busters - performance tuning 101 2007Myth busters - performance tuning 101 2007
Myth busters - performance tuning 101 2007
paulguerin527 views

Recently uploaded

GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...James Anderson
142 views32 slides
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT by
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITShapeBlue
138 views8 slides
"Surviving highload with Node.js", Andrii Shumada by
"Surviving highload with Node.js", Andrii Shumada "Surviving highload with Node.js", Andrii Shumada
"Surviving highload with Node.js", Andrii Shumada Fwdays
49 views29 slides
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ... by
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...ShapeBlue
97 views28 slides
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online by
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineShapeBlue
154 views19 slides
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava... by
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...ShapeBlue
74 views17 slides

Recently uploaded(20)

GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson142 views
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT by ShapeBlue
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
ShapeBlue138 views
"Surviving highload with Node.js", Andrii Shumada by Fwdays
"Surviving highload with Node.js", Andrii Shumada "Surviving highload with Node.js", Andrii Shumada
"Surviving highload with Node.js", Andrii Shumada
Fwdays49 views
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ... by ShapeBlue
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
How to Re-use Old Hardware with CloudStack. Saving Money and the Environment ...
ShapeBlue97 views
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online by ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue154 views
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava... by ShapeBlue
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
Centralized Logging Feature in CloudStack using ELK and Grafana - Kiran Chava...
ShapeBlue74 views
State of the Union - Rohit Yadav - Apache CloudStack by ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue218 views
Confidence in CloudStack - Aron Wagner, Nathan Gleason - Americ by ShapeBlue
Confidence in CloudStack - Aron Wagner, Nathan Gleason - AmericConfidence in CloudStack - Aron Wagner, Nathan Gleason - Americ
Confidence in CloudStack - Aron Wagner, Nathan Gleason - Americ
ShapeBlue58 views
Digital Personal Data Protection (DPDP) Practical Approach For CISOs by Priyanka Aash
Digital Personal Data Protection (DPDP) Practical Approach For CISOsDigital Personal Data Protection (DPDP) Practical Approach For CISOs
Digital Personal Data Protection (DPDP) Practical Approach For CISOs
Priyanka Aash103 views
Extending KVM Host HA for Non-NFS Storage - Alex Ivanov - StorPool by ShapeBlue
Extending KVM Host HA for Non-NFS Storage -  Alex Ivanov - StorPoolExtending KVM Host HA for Non-NFS Storage -  Alex Ivanov - StorPool
Extending KVM Host HA for Non-NFS Storage - Alex Ivanov - StorPool
ShapeBlue56 views
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ... by ShapeBlue
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
Backroll, News and Demo - Pierre Charton, Matthias Dhellin, Ousmane Diarra - ...
ShapeBlue121 views
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P... by ShapeBlue
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
Developments to CloudStack’s SDN ecosystem: Integration with VMWare NSX 4 - P...
ShapeBlue120 views
Why and How CloudStack at weSystems - Stephan Bienek - weSystems by ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue172 views
The Power of Heat Decarbonisation Plans in the Built Environment by IES VE
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built Environment
IES VE67 views
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit... by ShapeBlue
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
Transitioning from VMware vCloud to Apache CloudStack: A Path to Profitabilit...
ShapeBlue86 views
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue by ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
ShapeBlue68 views
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc130 views
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T by ShapeBlue
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TCloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
ShapeBlue81 views

Efficient Pagination Using MySQL

  • 1. Efficient Pagination Using MySQL Surat Singh Bhati (surat@yahoo-inc.com) Rick James (rjames@yahoo-inc.com) Yahoo Inc Percona Performance Conference 2009
  • 2. Outline 1. Overview – Common pagination UI pattern – Sample table and typical solution using OFFSET – Techniques to avoid large OFFSET – Performance comparison – Concerns -2-
  • 4. Basics First step toward having efficient pagination over large data set – Use index to filter rows (resolve WHERE) – Use same index to return rows in sorted order (resolve ORDER) Step zero – http://dev.mysql.com/doc/refman/5.1/en/mysql-indexes.html – http://dev.mysql.com/doc/refman/5.1/en/order-by-optimization.html – http://dev.mysql.com/doc/refman/5.1/en/limit-optimization.html -4-
  • 5. Using Index KEY a_b_c (a, b, c) ORDER may get resolved using Index – ORDER BY a – ORDER BY a,b – ORDER BY a, b, c – ORDER BY a DESC, b DESC, c DESC WHERE and ORDER both resolved using index: – WHERE a = const ORDER BY b, c – WHERE a = const AND b = const ORDER BY c – WHERE a = const ORDER BY b, c – WHERE a = const AND b > const ORDER BY b, c ORDER will not get resolved uisng index (file sort) – ORDER BY a ASC, b DESC, c DESC /* mixed sort direction */ – WHERE g = const ORDER BY b, c /* a prefix is missing */ – WHERE a = const ORDER BY c /* b is missing */ – WHERE a = const ORDER BY a, d /* d is not part of index */ -5-
  • 6. Sample Schema CREATE TABLE `message` ( `id` int(11) NOT NULL AUTO_INCREMENT, `title` varchar(255) COLLATE utf8_unicode_ci NOT NULL, `user_id` int(11) NOT NULL, `content` text COLLATE utf8_unicode_ci NOT NULL, `create_time` int(11) NOT NULL, `thumbs_up` int(11) NOT NULL DEFAULT '0', /* Vote Count */ PRIMARY KEY (`id`), KEY `thumbs_up_key` (`thumbs_up`,`id`) ) ENGINE=InnoDB mysql> show table status like 'message' G Engine: InnoDB Version: 10 Row_format: Compact Rows: 50000040 /* 50 Million */ Avg_row_length: 565 Data_length: 28273803264 /* 26 GB */ Index_length: 789577728 /* 753 MB */ Data_free: 6291456 Create_time: 2009-04-20 13:30:45 Two use case: • Paginate by time, recent message one page one • Paginate by thumps_up, largest value on page one -6-
  • 7. Typical Query 1. Get the total records SELECT count(*) FROM message 2. Get current page SELECT * FROM message ORDER BY id DESC LIMIT 0, 20 • http://domain.com/message?page=1 • ORDER BY id DESC LIMIT 0, 20 • http://domain.com/message?page=2 • ORDER BY id DESC LIMIT 20, 20 • http://domain.com/message?page=3 • ORDER BY id DESC LIMIT 40, 20 Note: id is auto_increment, same as create_time order, no need to create index on create_time, save space – -7-
  • 8. Explain mysql> explain SELECT * FROM message ORDER BY id DESC LIMIT 10000, 20G ***************** 1. row ************** id: 1 select_type: SIMPLE table: message type: index possible_keys: NULL key: PRIMARY key_len: 4 ref: NULL rows: 10020 Extra: 1 row in set (0.00 sec) – it can read rows using index scan and execution will stop as soon as it finds required rows. – LIMIT 10000, 20 means it has to read 10020 and throw away 10000 rows, then return next 20 rows. -8-
  • 9. Performance Implications – Larger OFFSET is going to increase active data set, MySQL has to bring data in memory that is never returned to caller. – Performance issue is more visible when your have database that can't fit in main memory. – Small percentage of request with large OFFSET would be able to hit disk I/O Disk I/O bottleneck – In order to display “21 to 40 of 1000,000” , some one has to count 1000,000 rows. -9-
  • 10. Simple Solution – Do not display total records, does user really care? – Do not let user go to deep pages, redirect him http://en.wikipedia.org/wiki/Internet_addiction_disorder after certain number of pages - 10 -
  • 11. Avoid Count(*) 1. Never display total messages, let user see more message by clicking 'next' 2. Do not count on every request, cache it, display stale count, user do not care about 324533 v/s 324633 3. Display 41 to 80 of Thousands 4. Use pre calculated count, increment/decrement value as insert/delete happens. - 11 -
  • 12. Solution to avoid offset 1. Change User Interface – No direct jumps to Nth page 2. LIMIT N is fine, Do not use LIMIT M,N – Provide extra clue about from where to start given page – Find the desired records using more restricted WHERE using given clue and ORDER BY and LIMIT N without OFFSET) - 12 -
  • 13. Find the clue 150 111 102 Page One 101 100 <a href=”/page=2;last_seen=100;dir=next>Next</a> 98 <a href=”/page=1;last_seen=98;dir=prev>Prev</a> 97 96 Page Two 95 94 <a href=”/page=3;last_seen=94;dir=next>Next</a> 93 <a href=”/page=3;last_seen=93;dir=prev>Prev</a> 92 91 Page Three 90 89 <a href=”/page=4;last_seen=89;dir=prev>Next</a> - 13 -
  • 14. Solution using clue Next Page: http://domain.com/forum?page=2&last_seen=100&dir=next WHERE id < 100 /* last_seen * ORDER BY id DESC LIMIT $page_size /* No OFFSET*/ Prev Page: http://domain.com/forum?page=1&last_seen=98&dir=prev WHERE id > 98 /* last_seen * ORDER BY id ASC LIMIT $page_size /* No OFFSET*/ Reverse given 10 rows before sending to user - 14 -
  • 15. Explain mysql> explain SELECT * FROM message WHERE id < '49999961' ORDER BY id DESC LIMIT 20 G *************************** 1. row *************************** id: 1 select_type: SIMPLE table: message type: range possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: NULL Rows: 25000020 /* ignore this */ Extra: Using where 1 row in set (0.00 sec) - 15 -
  • 16. What about order by non unique values? 99 99 98 Page One 98 98 98 98 97 Page Two 97 10 We can't do: WHERE thumbs_up < 98 ORDER BY thumbs_up DESC /* It will return few seen rows */ Can we say this: WHERE thumbs_up <= 98 AND <extra_con> ORDER BY thumbs_up DESC - 16 -
  • 17. Add more condition • Consider thumbs_up as major number – if we have additional minor number, we can use combination of major & minor as extra condition • Find additional column (minor number) – we can use id primary key as minor number - 17 -
  • 18. Solution First Page SELECT thumbs_up, id FROM message ORDER BY thumbs_up DESC, id DESC LIMIT $page_size +-----------+----+ | thumbs_up | id | +-----------+----+ | 99 | 14 | | 99 | 2 | | 98 | 18 | | 98 | 15 | | 98 | 13 | +-----------+----+ Next Page SELECT thumbs_up, id FROM message WHERE thumbs_up <= 98 AND (id < 13 OR thumbs_up < 98) ORDER BY thumbs_up DESC, id DESC LIMIT $page_size +-----------+----+ | thumbs_up | id | +-----------+----+ | 98 | 10 | | 98 | 6 | | 97 | 17 | - 18 -
  • 19. Make it better.. Query: SELECT * FROM message WHERE thumbs_up <= 98 AND (id < 13 OR thumbs_up < 98) ORDER BY thumbs_up DESC, id DESC LIMIT 20 Can be written as: SELECT m2.* FROM message m1, message m2 WHERE m1.id = m2.id AND m1.thumbs_up <= 98 AND (m1.id < 13 OR m1.thumbs_up < 98) ORDER BY m1.thumbs_up DESC, m1.id DESC LIMIT 20; - 19 -
  • 20. Explain *************************** 1. row *************************** id: 1 select_type: SIMPLE table: m1 type: range possible_keys: PRIMARY,thumbs_up_key key: thumbs_up_key /* (thumbs_up,id) */ key_len: 4 ref: NULL Rows: 25000020 /*ignore this, we will read just 20 rows*/ Extra: Using where; Using index /* Cover */ *************************** 2. row *************************** id: 1 select_type: SIMPLE table: m2 type: eq_ref possible_keys: PRIMARY key: PRIMARY key_len: 4 ref: forum.m1.id rows: 1 Extra: - 20 -
  • 21. Performance Gain (Primary Key Order) - 21 -
  • 22. Performance Gain (Secondary Key Order) - 22 -
  • 23. Throughput Gain • Throughput Gain while hitting first 30 pages: – Using LIMIT OFFSET, N • 600 query/sec – Using LIMIT N (no OFFSET) • 3.7k query/sec - 23 -
  • 24. Bonus Point Product issue with LIMIT M, N User is reading a page, in the mean time some records may be added to previous page. Due to insert/delete pages records are going to move forward/backward as rolling window: – User is reading messages on 4th page – While he was reading, one new message posted (it would be there on page one), all pages are going to move one message to next page. – User Clicks on Page 5 – One message from page got pushed forward on page 5, user has to read it again No such issue with news approach - 24 -
  • 25. Drawback Search Engine Optimization Expert says: Let bot reach all you pages with fewer number of deep dive Two Solutions: • Read extra rows – Read extra rows in advance and construct links for few previous & next pages • Use small offset – Do not read extra rows in advance, just add links for few past & next pages with required offset & last_seen_id on current page – Do query using new approach with small offset to display desired page – file:///Users/surat/Desktop/Picture%2043.png Additional concern: Dynamic urls, last_seen is not constant over time. - 25 -
  • 26. Thanks - 26 -