SlideShare a Scribd company logo
1 of 78
HISTORIA DE LA CIENCIA Y
           LA TECNOLOGIA.

“La verdadera utilidad pragmática y funcional del
conocimiento científico, será aquella que tenga una
aplicación práctica y funcional. Sirva para las acciones
concretas destinadas a resolver problemas sociales. Pero
sobre todo que le brinde al ser humano, mayor satisfacción
personal y eleve su calidad y dignidad.”

                              RUIZ LIMÓN, RAMÓN
INTRODUCCION

Hace mucho tiempo, antes de que la
ciencia actual diera comienzo en la
antigua Grecia, la mayoría de las
personas creían en la magia.

Pensaban       que   las   condiciones
meteorológicas, es deci r , el cl i m a
est aba     r egi do   por    f uer zas
sobr enat ur al es.
También creían que algunas
personas, como las brujas y los
hechiceros,    tenían     poderes
mágicos, y que valiéndose de
cánticos    y    encantamientos,
podían provocar acontecimientos
maravillosos o terribles, según el
estado de ánimo que tuvieran
ese día.
Cabe mencionar que, en aquel tiempo,
la magia estaba mezclada con la
religión. La gente creía que, si estos
encantamientos       y   rituales   se
realizaban de forma correcta, los
dioses o espíritus les concederían sus
peticiones, y de esta manera les
ayudarían a cubrir sus necesidades.
Los primeros sacerdotes eran magos
religiosos,     llamados       también
chamanes. Los antiguos cazadores y
recolectores, acudían a ellos para que
les ayudaran a tener éxito en sus
actividades con mayor precisión.

Estaban convencidos de que los
chamanes, tenían el poder de curar
enfermedades, pues se pensaba que
podían comunicarse con el mundo
espiritual o sobrenatural.
Los chamanes realizaban ceremonias
para garantizar el éxito en la caza y
prevenir desastres tales como la
pérdida     de      cosechas,     las
inundaciones, evitar las plagas y
sequias. Pero a medida que las
distintas civilizaciones avanzaron,
tales ideas, creencias, hábitos y
costumbres fueron paulatinamente
cayendo en el olvido.
La actitud primitiva de los
pueblos    antiguos,    ante   los
diversos fenómenos naturales
era    comprensible.     Ya   que
rodeado     de      misterios    e
impenetrables los cielos, las
antiguas     civilizaciones     le
atribuyeron el papel de morada
de los dioses, creyendo que eran
inaccesible a los seres humanos.
Debido a su escasa comprensión
y   capacidad     cognitiva.    La
experiencia más inmediata del
hombre primitivo, no le permitía
concebir el sustrato sobre el que
se encontraba como otra cosa,
que no fuera un enorme plano
sobre   el    que   se    alzaban
montañas     y   algunos    valles
profundos, que descendían a
zonas más profundas.
Los esfuerzos para sistematizar el
conocimiento humano, se remontan a los
tiempos prehistóricos, como atestiguan los
dibujos que los pueblos del paleolítico
pintaban en las paredes de las cuevas, los
datos numéricos grabados en hueso o
piedra o los objetos fabricados por las
civilizaciones del neolítico.
Los testimonios escritos más antiguos de
investigaciones protocientíficas proceden
de las culturas mesopotámicas, y
corresponden a listas de observaciones
astronómicas, sustancias químicas o
síntomas de enfermedades –además de
numerosas tablas matemáticas- inscritas
en caracteres cuneiformes sobre tablillas
de arcilla.
Otras tablillas que datan aproximádamente del
año 2000 A.C., demuestran que los babilonios
conocían   el   “Teorema    de   Pitágoras”,
resolvían ecuaciones cuadráticas y habían
desarrollado un sistema sexagesimal de
medidas (basado en el número 60) del que se
derivan las unidades modernas para calcular
tiempos y ángulos.
De acuerdo con éstas descripciones, se pueden
dar cuenta, que los pueblos en la antigüedad
utilizaban el conocimiento de manera práctica y
en función de sus necesidades. Por ejemplo, en el
Valle del Río Nilo, se han descubierto papiros de
un periodo cronológico próximo al de las culturas
mesopotámicas que contienen información sobre
el tratamiento de heridas y enfermedades, la
distribución de pan y cerveza, y la forma de
hallar el volumen de una parte de una pirámide.
Ahora, pasaremos a un breve resumen,
sobre los elementos precientíficos más
sobresalientes que fueron la base del
conocimiento científico que hoy en día
denominamos “ciencia”. Conocimientos
con los que contaban los pueblos
antiguos, en la época medieval hasta la
era moderna, antes de pasar a la
definición de la ciencia y los logros que se
han conseguido hasta hoy en día, tanto en
la ciencia formal, en la ciencia particular o
empírica y en la tecnología.
Hoy en día, algunas de las unidades de
longitud que se utilizan en nuestra cultura y
sociedad, provienen del sistema de medida
Egipcio, y el calendario que empleamos es
el resultado indirecto de las observaciones
astronómicas prehelénicas.
El   conocimiento      científico  en   Egipto y
Mesopotamia, era sobre todo de naturaleza
práctica, sin excesiva sistematización.

Uno de los primeros sabios griegos que investigó
las causas fundamentales de los fenómenos
naturales fue, el filósofo Tales de Mileto, en el siglo
VI a.C., que introdujo el concepto de que la Tierra
era un disco plano que flotaba en el elemento
universal, el agua. El matemático y filósofo
Pitágoras, de época posterior, estableció una
escuela de pensamiento en la que las matemáticas
se convirtieron en disciplina fundamental en toda
investigación científica.
Los eruditos pitagóricos postularon
una Tierra esférica que se movía en
una órbita circular alrededor de un
fuego central (sol). En Atenas, en el
siglo IV a.C., la filosofía natural
jónica y la ciencia matemática
pitagórica llegaron a una síntesis en
la lógica de Platón y Aristóteles.
En la academia de Platón, se subrayaba el
razonamiento deductivo (parte de lo general a
lo particular) y la representación matemática.

En el Liceo de Aristóteles, primaba el
razonamiento inductivo (parte de lo particular
a lo general) y la descripción cualitativa a través
de los conceptos y las categorías.

La interacción entre estos dos enfoques antiguos
(método deductivo e inductivo) son los que han
permitido a la ciencia y a la tecnología la
obtención de los avances de hoy en día.
Durante la llamada época helenística,
que siguió a la muerte de Alejandro
Magno ( 356- 323 ), el matemático,
astrónomo y geógrafo Eratóstenes
realizó una medida asombrosamente
precisa de las dimensiones de la
Tierra.
El astrónomo Aristarco de
Samos, propuso un sistema
planetario heliocéntrico (con
centro en el Sol), aunque este
concepto no halló aceptación en
la época antigua, sino hasta el
tiempo de Copérnico.
El matemático e inventor Arquímedes,
sentó las bases de la mecánica y la
hidrostática (una rama de la mecánica de
fluidos); el filósofo y científico Teofrasto
fundó la botánica; el astrónomo Hiparco
de Nicea desarrolló la trigonometría, y
los anatomistas y médicos Herófilo y
Erasístrato basaron la anatomía y la
fisiología en la disección de animales.
Tras la destrucción de Cartago y
Corinto por los romanos en el año
146 a.C., la investigación científica
perdió impulso hasta que se produjo
una breve recuperación en el siglo II
d.C., bajo el emperador y filósofo
Marco Aurelio.
El sistema de Tolomeo –una
teoría geocéntrica (con centro en
la Tierra)- y las obras médicas
del filósofo y médico Galeno, se
convirtieron      en      tratados
científicos de referencia para las
civilizaciones posteriores.
Un siglo después, surgió la nueva
ciencia experimental de la alquimia a
partir de la metalurgia. Sin embargo,
hacia el año 300, la alquimia fue
adquiriendo un tinte de secretismo y
simbolismo que redujo los avances
que sus experimentos podrían haber
proporcionado a la ciencia actual.
Durante la edad media, existían seis
grupos culturales principales: en lo
que respecta a Europa, de un lado el
Occidente Latino y, de otro, el
Oriente griego (o bizantino); en
cuanto al continente asiático, China e
India, así como la civilización
musulmana (también presente en
Europa), y finalmente, en el ignoto
continente americano, desligado del
resto de los grupos culturales
mencionado, la civilización Maya.
El grupo latino no contribuyó
demasiado a la ciencia hasta el
siglo XVIII; los griegos no
elaboraron sino meras paráfrasis
de la sabiduría antigua; los
mayas, en cambio, descubrieron
y emplearon el “cero” en sus
cálculos astronómicos, antes
que ningún otro pueblo antiguo.
En China la ciencia vivió épocas de
esplendor, pero no se dio un impulso
sostenido. Las matemáticas chinas
alcanzaron su apogeo en el siglo
XVIII, con el desarrollo de métodos
para resolver ecuaciones algebraicas
mediante matrices y con el empleo
del triángulo aritmético.
Pero lo más importante fue el
impacto que tuvieron en Europa
varias innovaciones prácticas de
origen chino. Entre ellas estaban
“los procesos de fabricación del
papel y la pólvora, el uso de la
imprenta y el empleo de la
brújula en la navegación.”
Las principales contribuciones indias a la
ciencia, fueron la formulación de los
numerales denominados “indoarábigos”,
empleados       actualmente,     y      la
modernización de la trigonometría. Estos
avances se transmitieron en primer lugar
a los árabes, que combinaron los mejores
elementos de las fuentes babilónicas,
griegas, chinas e indias.
En el siglo XIII la recuperación de
obras científicas de la antigüedad en
las universidades europeas llevó a
una controversia sobre el método
científico. Los llamados realistas
apoyaban el enfoque platónico
(método deductivo), mientras que los
nominalistas preferían la visión de
Aristóteles (método inductivo).
En 1543 el astrónomo polaco Nicolás
Copérnico publicó sobre “las revoluciones de
los cuerpos celestes”, que conmocionó a los
conocimientos astronómicos de ese época.
Otra obra publicada ese mismo año, siete
libros sobre “la estructura del cuerpo
humano”, del anatomista belga Andrés Vesalio,
corrigió y modernizó las enseñanzas de
Galeno y llevó al descubrimiento de la
circulación de la sangre.
Dos años después (1545), el libro
denominado el “gran arte”, del
matemático, físico y astrólogo italiano
Gerolamo Cardano, inició el periodo
moderno en el álgebra con la solución
de ecuaciones de tercer y cuarto
grado.
Esencialmente, los métodos y resultados
científicos modernos aparecieron en el siglo
XVII gracias al éxito de Galileo (1564-1642), al
combinar las funciones de erudito y artesano.

Gracias a las facultades superiores del
pensamiento humano y razonamiento, fue
posible la creación de los métodos antiguos: la
mayéutica, la dialéctica y la lógica (método
socrático, platónico y aristotélico). Y así fue
como Galileo aprovecho estos métodos.
Galileo añadió la verificación
sistemática a través de experimentos
planificados, en los que empleó
instrumentos científicos de invención
reciente como el telescopio (hecho en
suiza), el microscopio y el termómetro.
Con los trabajos científicos de Galileo
se había iniciado el Método científico.
A finales del siglo XVII se amplió la
experimentación: el matemático y físico
Evangelista Torricelli empleó el Barómetro; el
matemático, físico y astrónomo holandés
Christiaan Huygens usó el reloj de péndulo; el
físico y químico británico Robert Boyle y el
físico alemán Otto Von Guericke utilizaron la
bomba de vacío, con la cual realizaron varios
experimentos.
Como puede apreciarse hasta aquí, no fue una
tarea sencilla, lo que hoy se conoce como
“ciencia y tecnología”, ya que fueron muchos
los esfuerzos por parte de aquellas personas
que se aventuraron, para comprender el
funcionamiento de los fenómenos y hacerlo
comprensible a través de leyes, teoría,
principios que sistematizaron en un concepto
que denominaron la ciencia.
¿En qué consiste la ciencia?

El Concepto de Ciencia, proviene de la
palabra en latín scientia, de scire, que
significa conocer, término que en su
sentido más amplio se emplea para
referirse        al        conocimiento
sistematizado en cualquier campo
disciplinario o área del saber, pero que
suele aplicarse sobre todo a la
organización     de    la    experiencia
sensorial objetivamente verificable.
La búsqueda de conocimiento
en ese contexto se conoce
como     “ciencia   pura”,   para
distinguirla   de   la   “ciencia
aplicada”, la búsqueda de usos
prácticos     del   conocimiento
científico, y de la tecnología, a
través de la cual se llevan a
cabo las aplicaciones.
Otro definición de la ciencia, es
considerada como un conjunto de
conocimientos obtenidos mediante la
observación, experimentación y el
razonamiento,      sistemáticamente
estructurados y de los que se
deducen principios y leyes generales.
Por tanto, el conocimiento científico,
puede ser considerado como un hecho
(material y formal, concreto o
abstracto); en la vida práctica más
inmediata y más simple, nosotros a
través del pensamiento, conocemos
objetos, seres vivos como animales,
plantas y al hombre mismo.
El sujeto y el objeto sensible,
están en perpetua interacción;
ésta interacción la expresamos
con una palabra que designa la
relación entre dos elementos
opuestos y que, sin embargo,
son partes de un mismo todo,
como en una discusión o en un
diálogo; diremos, por definición,
que     es    una    interacción
dialéctica.
En primer lugar, es un conocimiento
práctico. Antes de elevarse al nivel
teórico, todo conocimiento empieza
por la experiencia (según el enfoque
filosófico empirista: la fuente del
conocimiento es la experiencia, o
dicho     de   otra    manera,   todo
conocimiento a pasado a través de
nuestros sentidos <receptores>). Solo
la práctica nos pone en contacto con
las realidades objetivas.
En segundo lugar, el conocimiento
humano es social. En la vida social,
descubrimos otros seres semejantes
a nosotros; ellos actúan sobre
nosotros, nosotros actuamos sobre
ellos, y con ellos. Al anudar con ellos
relaciones cada vez más ricas y
complejas,     desarrollamos    nuestra
vida     individual;    nosotros    los
conocemos a ellos y nos conocemos a
nosotros    mismos,     a  través   del
pensamiento y de las emociones.
Por último, el conocimiento humano
tiene un carácter histórico. Todo
conocimiento ha sido adquirido y
conquistado. Antes de llegar al
conocimiento, es preciso partir de la
ignorancia, seguir un largo y difícil
camino. Lo que es verdad en el sujeto
es igualmente verdad en el caso de
toda la humanidad; la inmensa labor
del pensamiento humano consiste en
un esfuerzo secular para pasar de la
ignorancia al conocimiento científico
y técnico.
En la investigación científica, al igual que,
por ejemplo, en el arte y en el deporte,
todo nuevo resultado supone un largo
entrenamiento, dedicación, disciplina y
esfuerzo; y toda nueva composición y
marca, todo mejoramiento de los
resultados, se ganan con procedimientos,
técnicas, estrategias y métodos. Pero
sobre todo con la Experimentación.
En las siguientes diapositivas hablaremos
sobre el reloj con péndulo y sus
aplicaciones. Asimismo, sobre la imprenta,
el papel y las aportaciones de Copérnico,
Galileo, Newton hasta llegar al siglo de las
luces que culmino en la revolución francesa.
Y después la revolución industrial y la
invención de los motores, hasta la
electrónica que dio origen a las PCs.
La invención de un reloj con péndulo en 1286
hizo posible que la gente no siguiera
dependiendo del curso del Sol para indicar
el momento del día en que se encontraba. El
reloj fue además una ayuda enorme para la
navegación, y la medida precisa del tiempo
fue esencial para el desarrollo de la ciencia
moderna.
La invención de la imprenta (1450), a su vez,
provocó una revolución social, pues hasta ese
momento cualquier documento o libro tenía
que ser copiado a mano. Esto limitaba el
número de copias que existían de un mismo libro
y, en consecuencia, el número de posibles
lectores que podían tener acceso a él. Los chinos
habían desarrollado tanto el papel como la
imprenta antes del siglo II d.C., pero esos
inventos no llegaron al mundo occidental hasta
mucho más tarde: hasta el año 1450 en que el
alemán Johann Gutenberg construyó la primera
imprenta en Occidente.
Otros autores, como Nicolás Copérnico (1473-
1543) iniciaron el cambio que culminaría en el
siglo XVII con el nacimiento de la llamada física
clásica. En dicho siglo se anunció la teoría del
magnetismo terrestre por W. Gilbert (1544-
1603), se establecieron las bases de la
dinámica, y se formularon las leyes de la caída
libre de los cuerpos y el uso del telescopio por
parte de Galileo Galilei (1564-1642).
Y es así, como Galileo (1564-1642), quien al
sentirse intrigado por comprender el movimiento
de   los   cuerpos,     la     caída   libre,   las
características   de     los     astros,    y    el
comportamiento de los materiales, optó por
seguir un método, es decir, un camino constituido
por un conjunto de procedimientos. Y sobre todo
un experimento (experimentación), cuestión
que había sugerido Francis Bacón.
Asimismo, Isaac Newton (1642-1727) estableció
el concepto de masa y formuló la teoría de la
gravitación universal (1682) en su obra
Philosophíae Naturalis Principia Mathematica.
Además, creó una herramienta muy importante y
necesario para su tratamiento matemático
denominado el cálculo de fluxiones, que más
tarde se conocería como el cálculo diferencial e
integral y demostró la validez de las leyes del
movimiento    de     los   planetas    obtenidas
empíricamente por Johanas Keppler (1571-1630).
Los descubrimientos científicos de
Newton (1686) y el sistema filosófico
del matemático y filósofo francés
René Descartes (1568), dieron paso a
la ciencia materialista del siglo XVIII,
que trataba de explicar los procesos
vitales a partir de su base físico-
químico. La confianza en la actitud
científica influyó también en las
ciencias sociales e inspiró el llamado
Siglo de las Luces, que culminó en la
Revolución francesa en 1789.
El aprovechamiento de la fuerza del vapor
supuso un paso muy importante en la
tecnología. La introducción de la máquina
de vapor llevó a numerosas invenciones en
el transporte y la industria. Las
máquinas de vapor convierten la energía
térmica en mecánica, a menudo
haciendo que el vapor se expanda en un
cilindro con un pistón móvil.
El movimiento alternativo del pistón
se convierte en giratorio mediante
una biela. Los primeros modelos se
desarrollaron en 1690, aunque
James Watt no diseñó la máquina de
vapor moderna hasta 70 años
después.
LAS MAQUINAS

Las     máquinas     son     instrumentos     o
dispositivos que pueden cambiar la intensidad
y la dirección en que se ejerce una fuerza. Las
máquinas transforman las fuerzas que se les
aplican, disminuyendo el esfuerzo que se
necesita para realizar un trabajo.

Para funcionar, las máquinas necesitan
energía; ninguna máquina funciona por sí sola
(componente    energético   y   componente
mecánico).
Las máquinas transforman la energía que
reciben. En el caso de la polea, la energía de
nuestros músculos se transforma en energía
potencial (al aumentar la altura desde el
suelo a la que se encuentra el mueble).

Pero no toda la energía que recibe una
máquina se aprovecha, siempre hay una
parte que se pierde en vencer la fricción o
rozamiento. En la polea, parte de la fuerza
aplicada se gasta en vencer el rozamiento de
la cuerda contra la rueda.
Salvo algunas máquinas simples, como las
tijeras, un cascanueces, un abrelatas, unas
pinzas, una polea o las rampas que hay en
las aceras, las máquinas que usamos son
más   complejas,   están   compuestas   de
varias o muchas máquinas simples que
trabajan de manera coordinada.
Muchos investigadores consideran que uno
de los grandes adelantos tecnológicos de la
humanidad fue la agricultura. ¿Sabes cuál
ha sido el otro gran avance del ser humano
en su relación con la naturaleza? La
Revolución Industrial, que se produjo al
principio de la edad contemporánea.
Se le denomina, Revolución Industrial al
cambio fundamental que se produce en una
sociedad cuando su economía deja de
basarse en la agricultura y pasa a depender
de la industria. Ese proceso se ha dado en
distintas épocas dependiendo de cada país
(en algunos, incluso, todavía hoy no se ha
producido).
La primera Revolución Industrial tuvo lugar
en Reino Unido a finales del siglo XVIII. A
partir de ese momento, la economía y la
sociedad británicas vivieron una profunda
transformación. Los cambios afectaron a
los procesos de producción: qué, cómo y
dónde se producía.
El     número       de     productos
manufacturados (fabricados) creció
de forma espectacular gracias a que
mejoraron      las    técnicas     de
elaboración: ahora se producía de
manera más eficaz. Hasta entonces,
los productos se fabricaban en
pequeños talleres, donde el artesano
realizaba todas las partes del trabajo
necesario para hacer un producto.
Ya hemos visto que la Revolución
Industrial comenzó a finales del siglo XVIII
en Reino Unido. Se inició gracias a la
aparición de una serie de inventos que
hicieron que se pudieran fabricar
productos textiles de manera más fácil y
rápida (por lo que eran más baratos para
el fabricante). Entre ellos, hay que
destacar los siguientes:
Las fábricas textiles se habían mecanizado
gracias   a   esos   inventos.    Pero   esos
mecanismos      funcionaban      con   energía
hidráulica (la que procede de caídas de
agua); por eso, había que colocar las
fábricas cerca de corrientes de agua, como,
por ejemplo, los ríos.
Esto se solucionó a partir de 1769, cuando
un escocés, James Watt, realizó el gran
invento, el gran avance tecnológico del
principio de la Revolución Industrial: la
máquina de vapor. En 1785, se instaló la
primera máquina de vapor para hacer
funcionar una fábrica de algodón. Desde
entonces, el vapor sustituyó al agua como
fuerza motriz.
La invención de la máquina de vapor tuvo
más consecuencias. No muchos años
después, en 1804, un ingeniero inglés que se
llamaba Richard Trevithick fue capaz de
hacer que una máquina de vapor moviera
una locomotora. Había nacido el
ferrocarril.
Así, la máquina de vapor revolucionó, a
su vez, el mundo del transporte: el
ferrocarril y los barcos de vapor
permitieron que los productos de las
fábricas llegaran, de forma más rápida
y barata, a los mercados de lugares
muy lejanos. Todo ello favoreció el
proceso de industrialización.
Cabe recordar que, todos estos avances en
la ciencia y en la tecnología, que hasta
ahora hemos descrito, fueron logrados
gracias a las investigaciones que
realizaron los personajes que a
continuación describiremos, junto con sus
aportaciones que hicieran a la ciencia.
Isaac   Newton   (1642-1727)    estableció   el
concepto de masa y formuló la teoría de la
gravitación universal (1682) en su obra
Philosophíae        Naturalis        Principia
Mathematica. Asimismo creó el cálculo
diferencia e integral (Calculo de Fluxiones).
También contribuyo Leinitz Godofredo.
Charles    Huygens       (1629-1695)
dedujo el teorema de la energía
cinética y aplicó los estudios de
Galileo sobre el péndulo a la
regulación de los relojes.
Además la termodinámica experimentó un
desarrollo importante con la formulación del
segundo principio en 1824 por S. Carnot (1796-
1832), y la del primer principio en 1842 por R.
Mayer (1814-1878). A este proceso de
investigación contribuyó R. Clausius (1822-
1888) con la creación del concepto de Entropía.
Finalmente L. Boltzmann (1844-1906) formularía
la mecánica estadística.
EL MOTOR DE COMBUSTION INTERNA

El motor de un automóvil y el de un avión son
un tipo de motores que genera energía
(mecánica) a partir de combustibles líquidos
derivados del petróleo, como la gasolina, el
gasoil o el queroseno, que arden dentro de
una cámara de combustión en el mismo
aparato, y por eso se llaman motores de
combustión interna.
LA MAQUINA TERMICA

Una máquina térmica es una máquina que es
capaz de transformar el calor en cualquier otra
forma de energía. Dos ejemplos de máquinas
térmicas son: la máquina de vapor (en las
antiguas locomotoras), que transforma en
movimiento el calor producido por la combustión
de carbón o madera, y la turbina de vapor, que
transforma el calor en energía eléctrica.
EL MOTOR DE GASOLINA

Los motores de gasolina de los automóviles
son máquinas térmicas, que aprovechan el
calor producido por la combustión de la
gasolina para mover unos pistones que
suben y bajan dentro de los cilindros. El
movimiento de los pistones se comunica a un
eje (llamado cigüeñal) que a su vez lo
transmite a otros mecanismos que hacen
que se muevan las ruedas.
La electrónica por su parte, con la
microelectrónica        ha        producido
microprocesadores, y así ha construido un
ordenador como una máquina compuesta
que, al igual que en su día hizo la máquina
de vapor y la máquina de combustión
interna, ha revolucionado nuestro mundo,
provocando la desaparición de unos
puestos de trabajo y la aparición de otros
nuevos. Y la restructuración de la sociedad
y el enriquecimiento de la cultura científica
y tecnológica.
En resumen, es importante mencionar como puede
apreciarse en estas diapositivas, el desarrollo y
progreso está subordinado a la economía, a la política
y al desarrollo científico y tecnológico, ya que los
procesos de producción e industrialización y la
emigración de la población rural a las ciudades
durante la época de la revolución industrial (finales del
siglo XVIII) fueron gracias a los inventos de las
máquinas y herramientas como instrumentos que
permitieron el aumento de las producción de
productos y la distribución de los mismos con mayor
rapidez y logrando mayor productividad.
Finalmente, cabe mencionar que la ciencia
consiste en un conjunto de principios muy
rigurosos, en donde se intenta encontrar la
razón, los argumentos, los antecedentes. Que
permiten demostrar y comprobar que los
resultados de una investigación científica
provienen de la correlación, el análisis y la
síntesis de ciertas variables o factores y hechos
empíricos que permiten construir y explicar, una
realidad en determinada parcela de la ciencia.
Palabras clave

Pensamiento, conocimiento, astronomía, ciencia,
tecnología,     método       científico,   revolución
industrial, cálculo diferencial e integral, motor de
combustión interna, electrónica.


                     Efraín Alberto Trejo Limón
                          Cuitláhuac Ruiz López
“EL CONOCIMIENTO CIENTIFICO, ES UNO DE LOS
GRANDES LOGROS Y CONSTRUCCIONES, A LOS QUE
HA DADO LUGAR, LA EVOLUCION DEL
PENSAMIENTO HUMANO.”



RUIZ LIMÓN, RAMÓN
INVESTIGADOR EN CIENCIAS DE LA SALUD,
CIENCIAS DE LA EDUCACIÓN, FILOSOFIA DE
LA CIENCIA E INGENIERIA ESTRUCTURAL.
“La verdadera utilidad pragmática y funcional
del conocimiento científico, será aquella que
tenga una aplicación práctica y funcional.
Sirva para las acciones concretas destinadas
a resolver problemas sociales. Pero sobre
todo, que le brinde al ser humano, mayor
satisfacción personal y eleve su calidad y
dignidad humana.”
                   MURILLO SALINAS, CATALINA

More Related Content

Viewers also liked

Blanc(2)
Blanc(2)Blanc(2)
Blanc(2)lyago
 
Synerfia Formation Finance Entrepreneuriale et Strategie
Synerfia   Formation Finance Entrepreneuriale et StrategieSynerfia   Formation Finance Entrepreneuriale et Strategie
Synerfia Formation Finance Entrepreneuriale et StrategieSynerfia Morgane Rollando
 
Green Business Conference By Cleantech Republic
Green Business Conference By Cleantech RepublicGreen Business Conference By Cleantech Republic
Green Business Conference By Cleantech RepublicPaul Perdrieu
 
Présentation Equiterre Bombannes Copie
Présentation Equiterre   Bombannes   CopiePrésentation Equiterre   Bombannes   Copie
Présentation Equiterre Bombannes CopieClochette
 
Presentacion De Cra G Roberts
Presentacion De Cra G RobertsPresentacion De Cra G Roberts
Presentacion De Cra G Robertshildaberon
 
Fotos Premios Xerais 2008 (I)
Fotos Premios Xerais 2008 (I)Fotos Premios Xerais 2008 (I)
Fotos Premios Xerais 2008 (I)bretemas
 
LA GRAN SABANA VENEZOLANA
LA GRAN SABANA VENEZOLANALA GRAN SABANA VENEZOLANA
LA GRAN SABANA VENEZOLANAzyanya5
 
Carpeta Sponsoreo2006
Carpeta Sponsoreo2006Carpeta Sponsoreo2006
Carpeta Sponsoreo2006guest729075
 
Jazz lessons with giants workbook
Jazz lessons with giants workbookJazz lessons with giants workbook
Jazz lessons with giants workbookSaulo Gomes
 
Boire Ou Conduire
Boire Ou ConduireBoire Ou Conduire
Boire Ou Conduireguestfaa252
 
RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)
RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)
RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)RAINBOW by ECS-3.COM
 

Viewers also liked (20)

French 05
French 05French 05
French 05
 
Spectaculaire
SpectaculaireSpectaculaire
Spectaculaire
 
21 Von Arx Paris
21 Von Arx Paris21 Von Arx Paris
21 Von Arx Paris
 
Blanc(2)
Blanc(2)Blanc(2)
Blanc(2)
 
2014 Trade Survey Results
2014 Trade Survey Results2014 Trade Survey Results
2014 Trade Survey Results
 
Synerfia Formation Finance Entrepreneuriale et Strategie
Synerfia   Formation Finance Entrepreneuriale et StrategieSynerfia   Formation Finance Entrepreneuriale et Strategie
Synerfia Formation Finance Entrepreneuriale et Strategie
 
#25ansAPESS. Synthèse courte des conférences - Question soumises à la table r...
#25ansAPESS. Synthèse courte des conférences - Question soumises à la table r...#25ansAPESS. Synthèse courte des conférences - Question soumises à la table r...
#25ansAPESS. Synthèse courte des conférences - Question soumises à la table r...
 
Green Business Conference By Cleantech Republic
Green Business Conference By Cleantech RepublicGreen Business Conference By Cleantech Republic
Green Business Conference By Cleantech Republic
 
Présentation Equiterre Bombannes Copie
Présentation Equiterre   Bombannes   CopiePrésentation Equiterre   Bombannes   Copie
Présentation Equiterre Bombannes Copie
 
Humor15
Humor15Humor15
Humor15
 
Presentacion De Cra G Roberts
Presentacion De Cra G RobertsPresentacion De Cra G Roberts
Presentacion De Cra G Roberts
 
Fotos Premios Xerais 2008 (I)
Fotos Premios Xerais 2008 (I)Fotos Premios Xerais 2008 (I)
Fotos Premios Xerais 2008 (I)
 
LA GRAN SABANA VENEZOLANA
LA GRAN SABANA VENEZOLANALA GRAN SABANA VENEZOLANA
LA GRAN SABANA VENEZOLANA
 
Grupo2
Grupo2Grupo2
Grupo2
 
Carpeta Sponsoreo2006
Carpeta Sponsoreo2006Carpeta Sponsoreo2006
Carpeta Sponsoreo2006
 
Jazz lessons with giants workbook
Jazz lessons with giants workbookJazz lessons with giants workbook
Jazz lessons with giants workbook
 
Boire Ou Conduire
Boire Ou ConduireBoire Ou Conduire
Boire Ou Conduire
 
Conferencia RBD 08
Conferencia RBD 08Conferencia RBD 08
Conferencia RBD 08
 
RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)
RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)
RAINBOW by ECS-3.COM: Avantages de notre GMP (version française)
 
Open Innovation
Open InnovationOpen Innovation
Open Innovation
 

Similar to Historia de la ciencia y tecnologia

Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologiakhynee
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologialhkaber
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologiaEuler
 
La historia de la ciencia y tecnologia
La historia de la ciencia y tecnologiaLa historia de la ciencia y tecnologia
La historia de la ciencia y tecnologiaEuler Ruiz
 
La historia de la ciencia y tecnologia
La historia de la ciencia y tecnologiaLa historia de la ciencia y tecnologia
La historia de la ciencia y tecnologiaEuler
 
El origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologiaEl origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologiaEuler
 
El origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologiaEl origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologialhkaber
 
La ciencia y tecnologia y su historia
La ciencia y tecnologia y su historiaLa ciencia y tecnologia y su historia
La ciencia y tecnologia y su historiakhiny
 
La historia de la ciencia y la tecnologia en la antiguedad
La historia de la ciencia y la tecnologia en la antiguedadLa historia de la ciencia y la tecnologia en la antiguedad
La historia de la ciencia y la tecnologia en la antiguedadRafael Mago
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologiafhynee
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologiaRamon Ruiz
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologiaEuler Ruiz
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadkhynee
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadRamon Ruiz
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadEuler Ruiz
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadfhynee
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadlhkaber
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadkhiny
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadEuler
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadEuler Ruiz
 

Similar to Historia de la ciencia y tecnologia (20)

Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologia
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologia
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologia
 
La historia de la ciencia y tecnologia
La historia de la ciencia y tecnologiaLa historia de la ciencia y tecnologia
La historia de la ciencia y tecnologia
 
La historia de la ciencia y tecnologia
La historia de la ciencia y tecnologiaLa historia de la ciencia y tecnologia
La historia de la ciencia y tecnologia
 
El origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologiaEl origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologia
 
El origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologiaEl origen de la ciencia y la tecnologia
El origen de la ciencia y la tecnologia
 
La ciencia y tecnologia y su historia
La ciencia y tecnologia y su historiaLa ciencia y tecnologia y su historia
La ciencia y tecnologia y su historia
 
La historia de la ciencia y la tecnologia en la antiguedad
La historia de la ciencia y la tecnologia en la antiguedadLa historia de la ciencia y la tecnologia en la antiguedad
La historia de la ciencia y la tecnologia en la antiguedad
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologia
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologia
 
Historia de la ciencia y tecnologia
Historia de la ciencia y tecnologiaHistoria de la ciencia y tecnologia
Historia de la ciencia y tecnologia
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 
La ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidadLa ciencia y su relacion con el pensamiento y la realidad
La ciencia y su relacion con el pensamiento y la realidad
 

More from Euler

La mente Interna y externa Metodo.pdf
La mente Interna y externa Metodo.pdfLa mente Interna y externa Metodo.pdf
La mente Interna y externa Metodo.pdfEuler
 
Sectores de la mente y la comprension 1990.pdf
Sectores de la mente y la comprension 1990.pdfSectores de la mente y la comprension 1990.pdf
Sectores de la mente y la comprension 1990.pdfEuler
 
El hombre interior y Cristo.pdf
El hombre interior y Cristo.pdfEl hombre interior y Cristo.pdf
El hombre interior y Cristo.pdfEuler
 
El poder del pensamiento y la palabra del hombre
El poder del pensamiento y la palabra del hombreEl poder del pensamiento y la palabra del hombre
El poder del pensamiento y la palabra del hombreEuler
 
Cifras covid 19 marzo a 19 abril 2020
Cifras covid 19 marzo a 19 abril 2020Cifras covid 19 marzo a 19 abril 2020
Cifras covid 19 marzo a 19 abril 2020Euler
 
El desarrollo psicosocial del sujeto 02
El desarrollo psicosocial del sujeto 02El desarrollo psicosocial del sujeto 02
El desarrollo psicosocial del sujeto 02Euler
 
La mente humana y la autoobservacion 1986
La mente humana y la autoobservacion 1986La mente humana y la autoobservacion 1986
La mente humana y la autoobservacion 1986Euler
 
La mente humana y la autoobservacion
La mente humana y la autoobservacionLa mente humana y la autoobservacion
La mente humana y la autoobservacionEuler
 
Estudio de la conciencia humana
Estudio de la conciencia humanaEstudio de la conciencia humana
Estudio de la conciencia humanaEuler
 
Literatura y el metodo didactico
Literatura y el metodo didacticoLiteratura y el metodo didactico
Literatura y el metodo didacticoEuler
 
La honestidad y el encuentro consigo mismo
La honestidad y el encuentro consigo mismoLa honestidad y el encuentro consigo mismo
La honestidad y el encuentro consigo mismoEuler
 
La honestidad y el encuentro son consigo mismo
La honestidad y el encuentro son  consigo mismoLa honestidad y el encuentro son  consigo mismo
La honestidad y el encuentro son consigo mismoEuler
 
Planeación Estrategica y el Plan Municipal de Desarrollo
Planeación Estrategica y el Plan Municipal de DesarrolloPlaneación Estrategica y el Plan Municipal de Desarrollo
Planeación Estrategica y el Plan Municipal de DesarrolloEuler
 
El poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamientoEl poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamientoEuler
 
El poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamientoEl poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamientoEuler
 
El desarrollo social y politico mexico 1521 a 2018
El desarrollo social y politico mexico 1521 a 2018El desarrollo social y politico mexico 1521 a 2018
El desarrollo social y politico mexico 1521 a 2018Euler
 
Retos y desafios mexico 2019 ramon ruiz
Retos y desafios  mexico 2019 ramon ruizRetos y desafios  mexico 2019 ramon ruiz
Retos y desafios mexico 2019 ramon ruizEuler
 
Dichos de la boca y pensamientos 1996
Dichos de la boca y pensamientos 1996Dichos de la boca y pensamientos 1996
Dichos de la boca y pensamientos 1996Euler
 
El poder de dichos de la boca y pensamientos
El poder de dichos de la boca y pensamientosEl poder de dichos de la boca y pensamientos
El poder de dichos de la boca y pensamientosEuler
 
El proposito de la vida 2000
El proposito de la vida 2000El proposito de la vida 2000
El proposito de la vida 2000Euler
 

More from Euler (20)

La mente Interna y externa Metodo.pdf
La mente Interna y externa Metodo.pdfLa mente Interna y externa Metodo.pdf
La mente Interna y externa Metodo.pdf
 
Sectores de la mente y la comprension 1990.pdf
Sectores de la mente y la comprension 1990.pdfSectores de la mente y la comprension 1990.pdf
Sectores de la mente y la comprension 1990.pdf
 
El hombre interior y Cristo.pdf
El hombre interior y Cristo.pdfEl hombre interior y Cristo.pdf
El hombre interior y Cristo.pdf
 
El poder del pensamiento y la palabra del hombre
El poder del pensamiento y la palabra del hombreEl poder del pensamiento y la palabra del hombre
El poder del pensamiento y la palabra del hombre
 
Cifras covid 19 marzo a 19 abril 2020
Cifras covid 19 marzo a 19 abril 2020Cifras covid 19 marzo a 19 abril 2020
Cifras covid 19 marzo a 19 abril 2020
 
El desarrollo psicosocial del sujeto 02
El desarrollo psicosocial del sujeto 02El desarrollo psicosocial del sujeto 02
El desarrollo psicosocial del sujeto 02
 
La mente humana y la autoobservacion 1986
La mente humana y la autoobservacion 1986La mente humana y la autoobservacion 1986
La mente humana y la autoobservacion 1986
 
La mente humana y la autoobservacion
La mente humana y la autoobservacionLa mente humana y la autoobservacion
La mente humana y la autoobservacion
 
Estudio de la conciencia humana
Estudio de la conciencia humanaEstudio de la conciencia humana
Estudio de la conciencia humana
 
Literatura y el metodo didactico
Literatura y el metodo didacticoLiteratura y el metodo didactico
Literatura y el metodo didactico
 
La honestidad y el encuentro consigo mismo
La honestidad y el encuentro consigo mismoLa honestidad y el encuentro consigo mismo
La honestidad y el encuentro consigo mismo
 
La honestidad y el encuentro son consigo mismo
La honestidad y el encuentro son  consigo mismoLa honestidad y el encuentro son  consigo mismo
La honestidad y el encuentro son consigo mismo
 
Planeación Estrategica y el Plan Municipal de Desarrollo
Planeación Estrategica y el Plan Municipal de DesarrolloPlaneación Estrategica y el Plan Municipal de Desarrollo
Planeación Estrategica y el Plan Municipal de Desarrollo
 
El poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamientoEl poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamiento
 
El poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamientoEl poder de los dichos de la boca y el pensamiento
El poder de los dichos de la boca y el pensamiento
 
El desarrollo social y politico mexico 1521 a 2018
El desarrollo social y politico mexico 1521 a 2018El desarrollo social y politico mexico 1521 a 2018
El desarrollo social y politico mexico 1521 a 2018
 
Retos y desafios mexico 2019 ramon ruiz
Retos y desafios  mexico 2019 ramon ruizRetos y desafios  mexico 2019 ramon ruiz
Retos y desafios mexico 2019 ramon ruiz
 
Dichos de la boca y pensamientos 1996
Dichos de la boca y pensamientos 1996Dichos de la boca y pensamientos 1996
Dichos de la boca y pensamientos 1996
 
El poder de dichos de la boca y pensamientos
El poder de dichos de la boca y pensamientosEl poder de dichos de la boca y pensamientos
El poder de dichos de la boca y pensamientos
 
El proposito de la vida 2000
El proposito de la vida 2000El proposito de la vida 2000
El proposito de la vida 2000
 

Historia de la ciencia y tecnologia

  • 1. HISTORIA DE LA CIENCIA Y LA TECNOLOGIA. “La verdadera utilidad pragmática y funcional del conocimiento científico, será aquella que tenga una aplicación práctica y funcional. Sirva para las acciones concretas destinadas a resolver problemas sociales. Pero sobre todo que le brinde al ser humano, mayor satisfacción personal y eleve su calidad y dignidad.” RUIZ LIMÓN, RAMÓN
  • 2. INTRODUCCION Hace mucho tiempo, antes de que la ciencia actual diera comienzo en la antigua Grecia, la mayoría de las personas creían en la magia. Pensaban que las condiciones meteorológicas, es deci r , el cl i m a est aba r egi do por f uer zas sobr enat ur al es.
  • 3. También creían que algunas personas, como las brujas y los hechiceros, tenían poderes mágicos, y que valiéndose de cánticos y encantamientos, podían provocar acontecimientos maravillosos o terribles, según el estado de ánimo que tuvieran ese día.
  • 4. Cabe mencionar que, en aquel tiempo, la magia estaba mezclada con la religión. La gente creía que, si estos encantamientos y rituales se realizaban de forma correcta, los dioses o espíritus les concederían sus peticiones, y de esta manera les ayudarían a cubrir sus necesidades.
  • 5. Los primeros sacerdotes eran magos religiosos, llamados también chamanes. Los antiguos cazadores y recolectores, acudían a ellos para que les ayudaran a tener éxito en sus actividades con mayor precisión. Estaban convencidos de que los chamanes, tenían el poder de curar enfermedades, pues se pensaba que podían comunicarse con el mundo espiritual o sobrenatural.
  • 6. Los chamanes realizaban ceremonias para garantizar el éxito en la caza y prevenir desastres tales como la pérdida de cosechas, las inundaciones, evitar las plagas y sequias. Pero a medida que las distintas civilizaciones avanzaron, tales ideas, creencias, hábitos y costumbres fueron paulatinamente cayendo en el olvido.
  • 7. La actitud primitiva de los pueblos antiguos, ante los diversos fenómenos naturales era comprensible. Ya que rodeado de misterios e impenetrables los cielos, las antiguas civilizaciones le atribuyeron el papel de morada de los dioses, creyendo que eran inaccesible a los seres humanos.
  • 8. Debido a su escasa comprensión y capacidad cognitiva. La experiencia más inmediata del hombre primitivo, no le permitía concebir el sustrato sobre el que se encontraba como otra cosa, que no fuera un enorme plano sobre el que se alzaban montañas y algunos valles profundos, que descendían a zonas más profundas.
  • 9. Los esfuerzos para sistematizar el conocimiento humano, se remontan a los tiempos prehistóricos, como atestiguan los dibujos que los pueblos del paleolítico pintaban en las paredes de las cuevas, los datos numéricos grabados en hueso o piedra o los objetos fabricados por las civilizaciones del neolítico.
  • 10. Los testimonios escritos más antiguos de investigaciones protocientíficas proceden de las culturas mesopotámicas, y corresponden a listas de observaciones astronómicas, sustancias químicas o síntomas de enfermedades –además de numerosas tablas matemáticas- inscritas en caracteres cuneiformes sobre tablillas de arcilla.
  • 11. Otras tablillas que datan aproximádamente del año 2000 A.C., demuestran que los babilonios conocían el “Teorema de Pitágoras”, resolvían ecuaciones cuadráticas y habían desarrollado un sistema sexagesimal de medidas (basado en el número 60) del que se derivan las unidades modernas para calcular tiempos y ángulos.
  • 12. De acuerdo con éstas descripciones, se pueden dar cuenta, que los pueblos en la antigüedad utilizaban el conocimiento de manera práctica y en función de sus necesidades. Por ejemplo, en el Valle del Río Nilo, se han descubierto papiros de un periodo cronológico próximo al de las culturas mesopotámicas que contienen información sobre el tratamiento de heridas y enfermedades, la distribución de pan y cerveza, y la forma de hallar el volumen de una parte de una pirámide.
  • 13. Ahora, pasaremos a un breve resumen, sobre los elementos precientíficos más sobresalientes que fueron la base del conocimiento científico que hoy en día denominamos “ciencia”. Conocimientos con los que contaban los pueblos antiguos, en la época medieval hasta la era moderna, antes de pasar a la definición de la ciencia y los logros que se han conseguido hasta hoy en día, tanto en la ciencia formal, en la ciencia particular o empírica y en la tecnología.
  • 14. Hoy en día, algunas de las unidades de longitud que se utilizan en nuestra cultura y sociedad, provienen del sistema de medida Egipcio, y el calendario que empleamos es el resultado indirecto de las observaciones astronómicas prehelénicas.
  • 15. El conocimiento científico en Egipto y Mesopotamia, era sobre todo de naturaleza práctica, sin excesiva sistematización. Uno de los primeros sabios griegos que investigó las causas fundamentales de los fenómenos naturales fue, el filósofo Tales de Mileto, en el siglo VI a.C., que introdujo el concepto de que la Tierra era un disco plano que flotaba en el elemento universal, el agua. El matemático y filósofo Pitágoras, de época posterior, estableció una escuela de pensamiento en la que las matemáticas se convirtieron en disciplina fundamental en toda investigación científica.
  • 16. Los eruditos pitagóricos postularon una Tierra esférica que se movía en una órbita circular alrededor de un fuego central (sol). En Atenas, en el siglo IV a.C., la filosofía natural jónica y la ciencia matemática pitagórica llegaron a una síntesis en la lógica de Platón y Aristóteles.
  • 17. En la academia de Platón, se subrayaba el razonamiento deductivo (parte de lo general a lo particular) y la representación matemática. En el Liceo de Aristóteles, primaba el razonamiento inductivo (parte de lo particular a lo general) y la descripción cualitativa a través de los conceptos y las categorías. La interacción entre estos dos enfoques antiguos (método deductivo e inductivo) son los que han permitido a la ciencia y a la tecnología la obtención de los avances de hoy en día.
  • 18. Durante la llamada época helenística, que siguió a la muerte de Alejandro Magno ( 356- 323 ), el matemático, astrónomo y geógrafo Eratóstenes realizó una medida asombrosamente precisa de las dimensiones de la Tierra.
  • 19. El astrónomo Aristarco de Samos, propuso un sistema planetario heliocéntrico (con centro en el Sol), aunque este concepto no halló aceptación en la época antigua, sino hasta el tiempo de Copérnico.
  • 20. El matemático e inventor Arquímedes, sentó las bases de la mecánica y la hidrostática (una rama de la mecánica de fluidos); el filósofo y científico Teofrasto fundó la botánica; el astrónomo Hiparco de Nicea desarrolló la trigonometría, y los anatomistas y médicos Herófilo y Erasístrato basaron la anatomía y la fisiología en la disección de animales.
  • 21. Tras la destrucción de Cartago y Corinto por los romanos en el año 146 a.C., la investigación científica perdió impulso hasta que se produjo una breve recuperación en el siglo II d.C., bajo el emperador y filósofo Marco Aurelio.
  • 22. El sistema de Tolomeo –una teoría geocéntrica (con centro en la Tierra)- y las obras médicas del filósofo y médico Galeno, se convirtieron en tratados científicos de referencia para las civilizaciones posteriores.
  • 23. Un siglo después, surgió la nueva ciencia experimental de la alquimia a partir de la metalurgia. Sin embargo, hacia el año 300, la alquimia fue adquiriendo un tinte de secretismo y simbolismo que redujo los avances que sus experimentos podrían haber proporcionado a la ciencia actual.
  • 24. Durante la edad media, existían seis grupos culturales principales: en lo que respecta a Europa, de un lado el Occidente Latino y, de otro, el Oriente griego (o bizantino); en cuanto al continente asiático, China e India, así como la civilización musulmana (también presente en Europa), y finalmente, en el ignoto continente americano, desligado del resto de los grupos culturales mencionado, la civilización Maya.
  • 25. El grupo latino no contribuyó demasiado a la ciencia hasta el siglo XVIII; los griegos no elaboraron sino meras paráfrasis de la sabiduría antigua; los mayas, en cambio, descubrieron y emplearon el “cero” en sus cálculos astronómicos, antes que ningún otro pueblo antiguo.
  • 26. En China la ciencia vivió épocas de esplendor, pero no se dio un impulso sostenido. Las matemáticas chinas alcanzaron su apogeo en el siglo XVIII, con el desarrollo de métodos para resolver ecuaciones algebraicas mediante matrices y con el empleo del triángulo aritmético.
  • 27. Pero lo más importante fue el impacto que tuvieron en Europa varias innovaciones prácticas de origen chino. Entre ellas estaban “los procesos de fabricación del papel y la pólvora, el uso de la imprenta y el empleo de la brújula en la navegación.”
  • 28. Las principales contribuciones indias a la ciencia, fueron la formulación de los numerales denominados “indoarábigos”, empleados actualmente, y la modernización de la trigonometría. Estos avances se transmitieron en primer lugar a los árabes, que combinaron los mejores elementos de las fuentes babilónicas, griegas, chinas e indias.
  • 29. En el siglo XIII la recuperación de obras científicas de la antigüedad en las universidades europeas llevó a una controversia sobre el método científico. Los llamados realistas apoyaban el enfoque platónico (método deductivo), mientras que los nominalistas preferían la visión de Aristóteles (método inductivo).
  • 30. En 1543 el astrónomo polaco Nicolás Copérnico publicó sobre “las revoluciones de los cuerpos celestes”, que conmocionó a los conocimientos astronómicos de ese época. Otra obra publicada ese mismo año, siete libros sobre “la estructura del cuerpo humano”, del anatomista belga Andrés Vesalio, corrigió y modernizó las enseñanzas de Galeno y llevó al descubrimiento de la circulación de la sangre.
  • 31. Dos años después (1545), el libro denominado el “gran arte”, del matemático, físico y astrólogo italiano Gerolamo Cardano, inició el periodo moderno en el álgebra con la solución de ecuaciones de tercer y cuarto grado.
  • 32. Esencialmente, los métodos y resultados científicos modernos aparecieron en el siglo XVII gracias al éxito de Galileo (1564-1642), al combinar las funciones de erudito y artesano. Gracias a las facultades superiores del pensamiento humano y razonamiento, fue posible la creación de los métodos antiguos: la mayéutica, la dialéctica y la lógica (método socrático, platónico y aristotélico). Y así fue como Galileo aprovecho estos métodos.
  • 33. Galileo añadió la verificación sistemática a través de experimentos planificados, en los que empleó instrumentos científicos de invención reciente como el telescopio (hecho en suiza), el microscopio y el termómetro. Con los trabajos científicos de Galileo se había iniciado el Método científico.
  • 34. A finales del siglo XVII se amplió la experimentación: el matemático y físico Evangelista Torricelli empleó el Barómetro; el matemático, físico y astrónomo holandés Christiaan Huygens usó el reloj de péndulo; el físico y químico británico Robert Boyle y el físico alemán Otto Von Guericke utilizaron la bomba de vacío, con la cual realizaron varios experimentos.
  • 35. Como puede apreciarse hasta aquí, no fue una tarea sencilla, lo que hoy se conoce como “ciencia y tecnología”, ya que fueron muchos los esfuerzos por parte de aquellas personas que se aventuraron, para comprender el funcionamiento de los fenómenos y hacerlo comprensible a través de leyes, teoría, principios que sistematizaron en un concepto que denominaron la ciencia.
  • 36. ¿En qué consiste la ciencia? El Concepto de Ciencia, proviene de la palabra en latín scientia, de scire, que significa conocer, término que en su sentido más amplio se emplea para referirse al conocimiento sistematizado en cualquier campo disciplinario o área del saber, pero que suele aplicarse sobre todo a la organización de la experiencia sensorial objetivamente verificable.
  • 37. La búsqueda de conocimiento en ese contexto se conoce como “ciencia pura”, para distinguirla de la “ciencia aplicada”, la búsqueda de usos prácticos del conocimiento científico, y de la tecnología, a través de la cual se llevan a cabo las aplicaciones.
  • 38. Otro definición de la ciencia, es considerada como un conjunto de conocimientos obtenidos mediante la observación, experimentación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales.
  • 39. Por tanto, el conocimiento científico, puede ser considerado como un hecho (material y formal, concreto o abstracto); en la vida práctica más inmediata y más simple, nosotros a través del pensamiento, conocemos objetos, seres vivos como animales, plantas y al hombre mismo.
  • 40. El sujeto y el objeto sensible, están en perpetua interacción; ésta interacción la expresamos con una palabra que designa la relación entre dos elementos opuestos y que, sin embargo, son partes de un mismo todo, como en una discusión o en un diálogo; diremos, por definición, que es una interacción dialéctica.
  • 41. En primer lugar, es un conocimiento práctico. Antes de elevarse al nivel teórico, todo conocimiento empieza por la experiencia (según el enfoque filosófico empirista: la fuente del conocimiento es la experiencia, o dicho de otra manera, todo conocimiento a pasado a través de nuestros sentidos <receptores>). Solo la práctica nos pone en contacto con las realidades objetivas.
  • 42. En segundo lugar, el conocimiento humano es social. En la vida social, descubrimos otros seres semejantes a nosotros; ellos actúan sobre nosotros, nosotros actuamos sobre ellos, y con ellos. Al anudar con ellos relaciones cada vez más ricas y complejas, desarrollamos nuestra vida individual; nosotros los conocemos a ellos y nos conocemos a nosotros mismos, a través del pensamiento y de las emociones.
  • 43. Por último, el conocimiento humano tiene un carácter histórico. Todo conocimiento ha sido adquirido y conquistado. Antes de llegar al conocimiento, es preciso partir de la ignorancia, seguir un largo y difícil camino. Lo que es verdad en el sujeto es igualmente verdad en el caso de toda la humanidad; la inmensa labor del pensamiento humano consiste en un esfuerzo secular para pasar de la ignorancia al conocimiento científico y técnico.
  • 44. En la investigación científica, al igual que, por ejemplo, en el arte y en el deporte, todo nuevo resultado supone un largo entrenamiento, dedicación, disciplina y esfuerzo; y toda nueva composición y marca, todo mejoramiento de los resultados, se ganan con procedimientos, técnicas, estrategias y métodos. Pero sobre todo con la Experimentación.
  • 45. En las siguientes diapositivas hablaremos sobre el reloj con péndulo y sus aplicaciones. Asimismo, sobre la imprenta, el papel y las aportaciones de Copérnico, Galileo, Newton hasta llegar al siglo de las luces que culmino en la revolución francesa. Y después la revolución industrial y la invención de los motores, hasta la electrónica que dio origen a las PCs.
  • 46. La invención de un reloj con péndulo en 1286 hizo posible que la gente no siguiera dependiendo del curso del Sol para indicar el momento del día en que se encontraba. El reloj fue además una ayuda enorme para la navegación, y la medida precisa del tiempo fue esencial para el desarrollo de la ciencia moderna.
  • 47. La invención de la imprenta (1450), a su vez, provocó una revolución social, pues hasta ese momento cualquier documento o libro tenía que ser copiado a mano. Esto limitaba el número de copias que existían de un mismo libro y, en consecuencia, el número de posibles lectores que podían tener acceso a él. Los chinos habían desarrollado tanto el papel como la imprenta antes del siglo II d.C., pero esos inventos no llegaron al mundo occidental hasta mucho más tarde: hasta el año 1450 en que el alemán Johann Gutenberg construyó la primera imprenta en Occidente.
  • 48. Otros autores, como Nicolás Copérnico (1473- 1543) iniciaron el cambio que culminaría en el siglo XVII con el nacimiento de la llamada física clásica. En dicho siglo se anunció la teoría del magnetismo terrestre por W. Gilbert (1544- 1603), se establecieron las bases de la dinámica, y se formularon las leyes de la caída libre de los cuerpos y el uso del telescopio por parte de Galileo Galilei (1564-1642).
  • 49. Y es así, como Galileo (1564-1642), quien al sentirse intrigado por comprender el movimiento de los cuerpos, la caída libre, las características de los astros, y el comportamiento de los materiales, optó por seguir un método, es decir, un camino constituido por un conjunto de procedimientos. Y sobre todo un experimento (experimentación), cuestión que había sugerido Francis Bacón.
  • 50. Asimismo, Isaac Newton (1642-1727) estableció el concepto de masa y formuló la teoría de la gravitación universal (1682) en su obra Philosophíae Naturalis Principia Mathematica. Además, creó una herramienta muy importante y necesario para su tratamiento matemático denominado el cálculo de fluxiones, que más tarde se conocería como el cálculo diferencial e integral y demostró la validez de las leyes del movimiento de los planetas obtenidas empíricamente por Johanas Keppler (1571-1630).
  • 51. Los descubrimientos científicos de Newton (1686) y el sistema filosófico del matemático y filósofo francés René Descartes (1568), dieron paso a la ciencia materialista del siglo XVIII, que trataba de explicar los procesos vitales a partir de su base físico- químico. La confianza en la actitud científica influyó también en las ciencias sociales e inspiró el llamado Siglo de las Luces, que culminó en la Revolución francesa en 1789.
  • 52. El aprovechamiento de la fuerza del vapor supuso un paso muy importante en la tecnología. La introducción de la máquina de vapor llevó a numerosas invenciones en el transporte y la industria. Las máquinas de vapor convierten la energía térmica en mecánica, a menudo haciendo que el vapor se expanda en un cilindro con un pistón móvil.
  • 53. El movimiento alternativo del pistón se convierte en giratorio mediante una biela. Los primeros modelos se desarrollaron en 1690, aunque James Watt no diseñó la máquina de vapor moderna hasta 70 años después.
  • 54. LAS MAQUINAS Las máquinas son instrumentos o dispositivos que pueden cambiar la intensidad y la dirección en que se ejerce una fuerza. Las máquinas transforman las fuerzas que se les aplican, disminuyendo el esfuerzo que se necesita para realizar un trabajo. Para funcionar, las máquinas necesitan energía; ninguna máquina funciona por sí sola (componente energético y componente mecánico).
  • 55. Las máquinas transforman la energía que reciben. En el caso de la polea, la energía de nuestros músculos se transforma en energía potencial (al aumentar la altura desde el suelo a la que se encuentra el mueble). Pero no toda la energía que recibe una máquina se aprovecha, siempre hay una parte que se pierde en vencer la fricción o rozamiento. En la polea, parte de la fuerza aplicada se gasta en vencer el rozamiento de la cuerda contra la rueda.
  • 56. Salvo algunas máquinas simples, como las tijeras, un cascanueces, un abrelatas, unas pinzas, una polea o las rampas que hay en las aceras, las máquinas que usamos son más complejas, están compuestas de varias o muchas máquinas simples que trabajan de manera coordinada.
  • 57. Muchos investigadores consideran que uno de los grandes adelantos tecnológicos de la humanidad fue la agricultura. ¿Sabes cuál ha sido el otro gran avance del ser humano en su relación con la naturaleza? La Revolución Industrial, que se produjo al principio de la edad contemporánea.
  • 58. Se le denomina, Revolución Industrial al cambio fundamental que se produce en una sociedad cuando su economía deja de basarse en la agricultura y pasa a depender de la industria. Ese proceso se ha dado en distintas épocas dependiendo de cada país (en algunos, incluso, todavía hoy no se ha producido).
  • 59. La primera Revolución Industrial tuvo lugar en Reino Unido a finales del siglo XVIII. A partir de ese momento, la economía y la sociedad británicas vivieron una profunda transformación. Los cambios afectaron a los procesos de producción: qué, cómo y dónde se producía.
  • 60. El número de productos manufacturados (fabricados) creció de forma espectacular gracias a que mejoraron las técnicas de elaboración: ahora se producía de manera más eficaz. Hasta entonces, los productos se fabricaban en pequeños talleres, donde el artesano realizaba todas las partes del trabajo necesario para hacer un producto.
  • 61. Ya hemos visto que la Revolución Industrial comenzó a finales del siglo XVIII en Reino Unido. Se inició gracias a la aparición de una serie de inventos que hicieron que se pudieran fabricar productos textiles de manera más fácil y rápida (por lo que eran más baratos para el fabricante). Entre ellos, hay que destacar los siguientes:
  • 62. Las fábricas textiles se habían mecanizado gracias a esos inventos. Pero esos mecanismos funcionaban con energía hidráulica (la que procede de caídas de agua); por eso, había que colocar las fábricas cerca de corrientes de agua, como, por ejemplo, los ríos.
  • 63. Esto se solucionó a partir de 1769, cuando un escocés, James Watt, realizó el gran invento, el gran avance tecnológico del principio de la Revolución Industrial: la máquina de vapor. En 1785, se instaló la primera máquina de vapor para hacer funcionar una fábrica de algodón. Desde entonces, el vapor sustituyó al agua como fuerza motriz.
  • 64. La invención de la máquina de vapor tuvo más consecuencias. No muchos años después, en 1804, un ingeniero inglés que se llamaba Richard Trevithick fue capaz de hacer que una máquina de vapor moviera una locomotora. Había nacido el ferrocarril.
  • 65. Así, la máquina de vapor revolucionó, a su vez, el mundo del transporte: el ferrocarril y los barcos de vapor permitieron que los productos de las fábricas llegaran, de forma más rápida y barata, a los mercados de lugares muy lejanos. Todo ello favoreció el proceso de industrialización.
  • 66. Cabe recordar que, todos estos avances en la ciencia y en la tecnología, que hasta ahora hemos descrito, fueron logrados gracias a las investigaciones que realizaron los personajes que a continuación describiremos, junto con sus aportaciones que hicieran a la ciencia.
  • 67. Isaac Newton (1642-1727) estableció el concepto de masa y formuló la teoría de la gravitación universal (1682) en su obra Philosophíae Naturalis Principia Mathematica. Asimismo creó el cálculo diferencia e integral (Calculo de Fluxiones). También contribuyo Leinitz Godofredo.
  • 68. Charles Huygens (1629-1695) dedujo el teorema de la energía cinética y aplicó los estudios de Galileo sobre el péndulo a la regulación de los relojes.
  • 69. Además la termodinámica experimentó un desarrollo importante con la formulación del segundo principio en 1824 por S. Carnot (1796- 1832), y la del primer principio en 1842 por R. Mayer (1814-1878). A este proceso de investigación contribuyó R. Clausius (1822- 1888) con la creación del concepto de Entropía. Finalmente L. Boltzmann (1844-1906) formularía la mecánica estadística.
  • 70. EL MOTOR DE COMBUSTION INTERNA El motor de un automóvil y el de un avión son un tipo de motores que genera energía (mecánica) a partir de combustibles líquidos derivados del petróleo, como la gasolina, el gasoil o el queroseno, que arden dentro de una cámara de combustión en el mismo aparato, y por eso se llaman motores de combustión interna.
  • 71. LA MAQUINA TERMICA Una máquina térmica es una máquina que es capaz de transformar el calor en cualquier otra forma de energía. Dos ejemplos de máquinas térmicas son: la máquina de vapor (en las antiguas locomotoras), que transforma en movimiento el calor producido por la combustión de carbón o madera, y la turbina de vapor, que transforma el calor en energía eléctrica.
  • 72. EL MOTOR DE GASOLINA Los motores de gasolina de los automóviles son máquinas térmicas, que aprovechan el calor producido por la combustión de la gasolina para mover unos pistones que suben y bajan dentro de los cilindros. El movimiento de los pistones se comunica a un eje (llamado cigüeñal) que a su vez lo transmite a otros mecanismos que hacen que se muevan las ruedas.
  • 73. La electrónica por su parte, con la microelectrónica ha producido microprocesadores, y así ha construido un ordenador como una máquina compuesta que, al igual que en su día hizo la máquina de vapor y la máquina de combustión interna, ha revolucionado nuestro mundo, provocando la desaparición de unos puestos de trabajo y la aparición de otros nuevos. Y la restructuración de la sociedad y el enriquecimiento de la cultura científica y tecnológica.
  • 74. En resumen, es importante mencionar como puede apreciarse en estas diapositivas, el desarrollo y progreso está subordinado a la economía, a la política y al desarrollo científico y tecnológico, ya que los procesos de producción e industrialización y la emigración de la población rural a las ciudades durante la época de la revolución industrial (finales del siglo XVIII) fueron gracias a los inventos de las máquinas y herramientas como instrumentos que permitieron el aumento de las producción de productos y la distribución de los mismos con mayor rapidez y logrando mayor productividad.
  • 75. Finalmente, cabe mencionar que la ciencia consiste en un conjunto de principios muy rigurosos, en donde se intenta encontrar la razón, los argumentos, los antecedentes. Que permiten demostrar y comprobar que los resultados de una investigación científica provienen de la correlación, el análisis y la síntesis de ciertas variables o factores y hechos empíricos que permiten construir y explicar, una realidad en determinada parcela de la ciencia.
  • 76. Palabras clave Pensamiento, conocimiento, astronomía, ciencia, tecnología, método científico, revolución industrial, cálculo diferencial e integral, motor de combustión interna, electrónica. Efraín Alberto Trejo Limón Cuitláhuac Ruiz López
  • 77. “EL CONOCIMIENTO CIENTIFICO, ES UNO DE LOS GRANDES LOGROS Y CONSTRUCCIONES, A LOS QUE HA DADO LUGAR, LA EVOLUCION DEL PENSAMIENTO HUMANO.” RUIZ LIMÓN, RAMÓN INVESTIGADOR EN CIENCIAS DE LA SALUD, CIENCIAS DE LA EDUCACIÓN, FILOSOFIA DE LA CIENCIA E INGENIERIA ESTRUCTURAL.
  • 78. “La verdadera utilidad pragmática y funcional del conocimiento científico, será aquella que tenga una aplicación práctica y funcional. Sirva para las acciones concretas destinadas a resolver problemas sociales. Pero sobre todo, que le brinde al ser humano, mayor satisfacción personal y eleve su calidad y dignidad humana.” MURILLO SALINAS, CATALINA