Explaining the Postgres Query Optimizer
BRUCE MOMJIAN
January, 2012
The optimizer is the "brain" of the database, interpre...
Postgres Query Execution
User
Terminal
Code
Database
Server
Application
Queries
Results
PostgreSQL
Libpq
Explaining the Po...
Postgres Query Execution
utility
Plan
Optimal Path
Query
Postmaster
Postgres Postgres
Libpq
Main
Generate Plan
Traffic Cop...
Postgres Query Execution
utility
Plan
Optimal Path
Query
Generate Plan
Traffic Cop
Generate Paths
Execute Plan
e.g. CREATE...
The Optimizer Is the Brain
http://www.wsmanaging.com/
Explaining the Postgres Query Optimizer 5 / 56
What Decisions Does the Optimizer Have to Make?
◮ Scan Method
◮ Join Method
◮ Join Order
Explaining the Postgres Query Opt...
Which Scan Method?
◮ Sequential Scan
◮ Bitmap Index Scan
◮ Index Scan
Explaining the Postgres Query Optimizer 7 / 56
A Simple Example Using pg_class.relname
SELECT relname
FROM pg_class
ORDER BY 1
LIMIT 8;
relname
-------------------------...
Let’s Use Just the First Letter of pg_class.relname
SELECT substring(relname, 1, 1)
FROM pg_class
ORDER BY 1
LIMIT 8;
subs...
Create a Temporary Table with an Index
CREATE TEMPORARY TABLE sample (letter, junk) AS
SELECT substring(relname, 1, 1), re...
Create an EXPLAIN Function
CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$
BEGIN
RETURN QUERY EXEC...
What is the Distribution of the sample Table?
WITH letters (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP ...
What is the Distribution of the sample Table?
letter | count | %
--------+-------+------
p | 199 | 78.7
s | 9 | 3.6
c | 8 ...
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;
QUERY PLAN
--------------------------...
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
--------------------------...
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
--------------------------...
Running ANALYZE Causes
a Sequential Scan for a Common Value
ANALYZE sample;
ANALYZE
EXPLAIN SELECT letter
FROM sample
WHER...
Sequential Scan
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
8K
Heap
A
A
D
T
A
T
A
D
A
T
A
D
A
Ex...
A Less Common Value Causes a Bitmap Heap Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
-----------...
Bitmap Index Scan
=&
Combined
’A’ AND ’NS’
1
0
1
0
TableIndex 1
col1 = ’A’
Index 2
1
0
0
col2 = ’NS’
1 0
1
0
0
Index
Expla...
An Even Rarer Value Causes an Index Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
----------------...
Index Scan
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
< >=Key
< >=Key
Index
Heap
< >=Key
A
T
A
D
A
T
A
D
A
T
A
D
...
Let’s Look at All Values and their Effects
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1...
OK, Just the First Lines
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter A...
Just the First EXPLAIN Lines
l | count | lookup_letter
---+-------+-------------------------------------------------------...
We Can Force an Index Scan
SET enable_seqscan = false;
SET enable_bitmapscan = false;
WITH letter (letter, count) AS (
SEL...
Notice the High Cost for Common Values
l | count | lookup_letter
---+-------+---------------------------------------------...
This Was the Optimizer’s Preference
l | count | lookup_letter
---+-------+------------------------------------------------...
Which Join Method?
◮ Nested Loop
◮ With Inner Sequential Scan
◮ With Inner Index Scan
◮ Hash Join
◮ Merge Join
Explaining ...
What Is in pg_proc.oid?
SELECT oid
FROM pg_proc
ORDER BY 1
LIMIT 8;
oid
-----
31
33
34
35
38
39
40
41
(8 rows)
Explaining ...
Create Temporary Tables
from pg_proc and pg_class
CREATE TEMPORARY TABLE sample1 (id, junk) AS
SELECT oid, repeat(’x’, 250...
Join the Two Tables
with a Tight Restriction
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample...
Nested Loop Join
with Inner Sequential Scan
aag
aar
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
aai
Used For Small T...
Pseudocode for Nested Loop Join
with Inner Sequential Scan
for (i = 0; i < length(outer); i++)
for (j = 0; j < length(inne...
Join the Two Tables with a Looser Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sampl...
Hash Join
Hashed
Must fit in Main Memory
aak
aar
aak
aay aaraam
aao aaw
aay
aag
aas
Outer Inner
Explaining the Postgres Qu...
Pseudocode for Hash Join
for (j = 0; j < length(inner); j++)
hash_key = hash(inner[j]);
append(hash_store[hash_key], inner...
Join the Two Tables with No Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)...
Merge Join
Sorted
Sorted
Ideal for Large Tables
An Index Can Be Used to Eliminate the Sort
aaa
aab
aac
aad
aaa
aab
aab
aaf...
Pseudocode for Merge Join
sort(outer);
sort(inner);
i = 0;
j = 0;
save_j = 0;
while (i < length(outer))
if (outer[i] == in...
Order of Joined Relations Is Insignificant
EXPLAIN SELECT sample2.junk
FROM sample2 JOIN sample1 ON (sample2.id = sample1.i...
Add Optimizer Statistics
ANALYZE sample1;
ANALYZE sample2;
Explaining the Postgres Query Optimizer 42 / 56
This Was a Merge Join without Optimizer Statistics
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = ...
Outer Joins Can Affect Optimizer Join Usage
EXPLAIN SELECT sample1.junk
FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1....
Cross Joins Are Nested Loop Joins
without Join Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 CROSS JOIN sample2;
QU...
Create Indexes
CREATE INDEX i_sample1 on sample1 (id);
CREATE INDEX i_sample2 on sample2 (id);
Explaining the Postgres Que...
Nested Loop with Inner Index Scan Now Possible
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = samp...
Nested Loop Join with Inner Index Scan
aag
aar
aai
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
Index Lookup
Index Mu...
Pseudocode for Nested Loop Join
with Inner Index Scan
for (i = 0; i < length(outer); i++)
index_entry = get_first_match(ou...
Query Restrictions Affect Join Usage
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WH...
All ’junk’ Columns Begin with ’xxx’
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHE...
Without LIMIT, Hash Is Used
for this Unrestricted Join
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.i...
LIMIT Can Affect Join Usage
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)...
LIMIT 10
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1...
LIMIT 100 Switches to Hash Join
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2...
Conclusion
http://momjian.us/presentations http://www.vivapixel.com/photo/14252
Explaining the Postgres Query Optimizer 56...
Upcoming SlideShare
Loading in …5
×

Explaining the Postgres Query Optimizer - PGCon 2014

1,092 views

Published on

The optimizer is the "brain" of the database, interpreting SQL queries and determining the fastest method of execution.

This talk uses the EXPLAIN command to show how the optimizer interprets queries and determines optimal execution. Examples include scan methods, index selection, join types, and how ANALYZE statistics influence their selection. The talk will assist developers and administrators in understanding how Postgres optimally executes their queries and what steps they can take to understand and perhaps improve its behavior.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,092
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
39
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Explaining the Postgres Query Optimizer - PGCon 2014

  1. 1. Explaining the Postgres Query Optimizer BRUCE MOMJIAN January, 2012 The optimizer is the "brain" of the database, interpreting SQL queries and determining the fastest method of execution. This talk uses the EXPLAIN command to show how the optimizer interprets queries and determines optimal execution. Creative Commons Attribution License http://momjian.us/presentations 1 / 56
  2. 2. Postgres Query Execution User Terminal Code Database Server Application Queries Results PostgreSQL Libpq Explaining the Postgres Query Optimizer 2 / 56
  3. 3. Postgres Query Execution utility Plan Optimal Path Query Postmaster Postgres Postgres Libpq Main Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Storage ManagersCatalogUtilities Access Methods Nodes / Lists Explaining the Postgres Query Optimizer 3 / 56
  4. 4. Postgres Query Execution utility Plan Optimal Path Query Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Explaining the Postgres Query Optimizer 4 / 56
  5. 5. The Optimizer Is the Brain http://www.wsmanaging.com/ Explaining the Postgres Query Optimizer 5 / 56
  6. 6. What Decisions Does the Optimizer Have to Make? ◮ Scan Method ◮ Join Method ◮ Join Order Explaining the Postgres Query Optimizer 6 / 56
  7. 7. Which Scan Method? ◮ Sequential Scan ◮ Bitmap Index Scan ◮ Index Scan Explaining the Postgres Query Optimizer 7 / 56
  8. 8. A Simple Example Using pg_class.relname SELECT relname FROM pg_class ORDER BY 1 LIMIT 8; relname ----------------------------------- _pg_foreign_data_wrappers _pg_foreign_servers _pg_user_mappings administrable_role_authorizations applicable_roles attributes check_constraint_routine_usage check_constraints (8 rows) Explaining the Postgres Query Optimizer 8 / 56
  9. 9. Let’s Use Just the First Letter of pg_class.relname SELECT substring(relname, 1, 1) FROM pg_class ORDER BY 1 LIMIT 8; substring ----------- _ _ _ a a a c c (8 rows) Explaining the Postgres Query Optimizer 9 / 56
  10. 10. Create a Temporary Table with an Index CREATE TEMPORARY TABLE sample (letter, junk) AS SELECT substring(relname, 1, 1), repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 253 CREATE INDEX i_sample on sample (letter); CREATE INDEX All the queries used in this presentation are available at http://momjian.us/main/writings/pgsql/optimizer.sql. Explaining the Postgres Query Optimizer 10 / 56
  11. 11. Create an EXPLAIN Function CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$ BEGIN RETURN QUERY EXECUTE ’ EXPLAIN SELECT letter FROM sample WHERE letter = ’’’ || $1 || ’’’’; END $$ LANGUAGE plpgsql; CREATE FUNCTION Explaining the Postgres Query Optimizer 11 / 56
  12. 12. What is the Distribution of the sample Table? WITH letters (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%" FROM letters ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 12 / 56
  13. 13. What is the Distribution of the sample Table? letter | count | % --------+-------+------ p | 199 | 78.7 s | 9 | 3.6 c | 8 | 3.2 r | 7 | 2.8 t | 5 | 2.0 v | 4 | 1.6 f | 4 | 1.6 d | 4 | 1.6 u | 3 | 1.2 a | 3 | 1.2 _ | 3 | 1.2 e | 2 | 0.8 i | 1 | 0.4 k | 1 | 0.4 (14 rows) Explaining the Postgres Query Optimizer 13 / 56
  14. 14. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’p’::text) (2 rows) Explaining the Postgres Query Optimizer 14 / 56
  15. 15. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’d’::text) (2 rows) Explaining the Postgres Query Optimizer 15 / 56
  16. 16. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 16 / 56
  17. 17. Running ANALYZE Causes a Sequential Scan for a Common Value ANALYZE sample; ANALYZE EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN --------------------------------------------------------- Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) Filter: (letter = ’p’::text) (2 rows) Autovacuum cannot ANALYZE (or VACUUM) temporary tables because these tables are only visible to the creating session. Explaining the Postgres Query Optimizer 17 / 56
  18. 18. Sequential Scan T A D A T A D A T A D A T A D A T A D A T A D A T A D A T A D A T A D 8K Heap A A D T A T A D A T A D A Explaining the Postgres Query Optimizer 18 / 56
  19. 19. A Less Common Value Causes a Bitmap Heap Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ----------------------------------------------------------------------- Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) Recheck Cond: (letter = ’d’::text) -> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0) Index Cond: (letter = ’d’::text) (4 rows) Explaining the Postgres Query Optimizer 19 / 56
  20. 20. Bitmap Index Scan =& Combined ’A’ AND ’NS’ 1 0 1 0 TableIndex 1 col1 = ’A’ Index 2 1 0 0 col2 = ’NS’ 1 0 1 0 0 Index Explaining the Postgres Query Optimizer 20 / 56
  21. 21. An Even Rarer Value Causes an Index Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ----------------------------------------------------------------------- Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 21 / 56
  22. 22. Index Scan A D A T A D A T A D A T A D A T A D A T A D A T A D < >=Key < >=Key Index Heap < >=Key A T A D A T A D A T A D A T A D A T A D A T Explaining the Postgres Query Optimizer 22 / 56
  23. 23. Let’s Look at All Values and their Effects WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, lookup_letter(letter) FROM letter ORDER BY 2 DESC; l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) p | 199 | Filter: (letter = ’p’::text) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) s | 9 | Filter: (letter = ’s’::text) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) c | 8 | Filter: (letter = ’c’::text) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) r | 7 | Filter: (letter = ’r’::text) … Explaining the Postgres Query Optimizer 23 / 56
  24. 24. OK, Just the First Lines WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 24 / 56
  25. 25. Just the First EXPLAIN Lines l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 25 / 56
  26. 26. We Can Force an Index Scan SET enable_seqscan = false; SET enable_bitmapscan = false; WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 26 / 56
  27. 27. Notice the High Cost for Common Values l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width= s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2) c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2) r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2) t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2) d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) _ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) RESET ALL; RESET Explaining the Postgres Query Optimizer 27 / 56
  28. 28. This Was the Optimizer’s Preference l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 28 / 56
  29. 29. Which Join Method? ◮ Nested Loop ◮ With Inner Sequential Scan ◮ With Inner Index Scan ◮ Hash Join ◮ Merge Join Explaining the Postgres Query Optimizer 29 / 56
  30. 30. What Is in pg_proc.oid? SELECT oid FROM pg_proc ORDER BY 1 LIMIT 8; oid ----- 31 33 34 35 38 39 40 41 (8 rows) Explaining the Postgres Query Optimizer 30 / 56
  31. 31. Create Temporary Tables from pg_proc and pg_class CREATE TEMPORARY TABLE sample1 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_proc ORDER BY random(); -- add rows in random order SELECT 2256 CREATE TEMPORARY TABLE sample2 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 260 These tables have no indexes and no optimizer statistics. Explaining the Postgres Query Optimizer 31 / 56
  32. 32. Join the Two Tables with a Tight Restriction EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------- Nested Loop (cost=0.00..234.68 rows=300 width=32) -> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4) Filter: (id = 33::oid) -> Materialize (cost=0.00..25.41 rows=6 width=36) -> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36) Filter: (id = 33::oid) (6 rows) Explaining the Postgres Query Optimizer 32 / 56
  33. 33. Nested Loop Join with Inner Sequential Scan aag aar aay aag aas aar aaa aay aai aag No Setup Required aai Used For Small Tables Outer Inner Explaining the Postgres Query Optimizer 33 / 56
  34. 34. Pseudocode for Nested Loop Join with Inner Sequential Scan for (i = 0; i < length(outer); i++) for (j = 0; j < length(inner); j++) if (outer[i] == inner[j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 34 / 56
  35. 35. Join the Two Tables with a Looser Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.id > 33; QUERY PLAN ---------------------------------------------------------------------- Hash Join (cost=30.50..950.88 rows=20424 width=32) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) -> Hash (cost=25.38..25.38 rows=410 width=4) -> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4) Filter: (id > 33::oid) (6 rows) Explaining the Postgres Query Optimizer 35 / 56
  36. 36. Hash Join Hashed Must fit in Main Memory aak aar aak aay aaraam aao aaw aay aag aas Outer Inner Explaining the Postgres Query Optimizer 36 / 56
  37. 37. Pseudocode for Hash Join for (j = 0; j < length(inner); j++) hash_key = hash(inner[j]); append(hash_store[hash_key], inner[j]); for (i = 0; i < length(outer); i++) hash_key = hash(outer[i]); for (j = 0; j < length(hash_store[hash_key]); j++) if (outer[i] == hash_store[hash_key][j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 37 / 56
  38. 38. Join the Two Tables with No Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------- Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=4) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4) -> Sort (cost=842.29..867.20 rows=9963 width=36) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) (8 rows) Explaining the Postgres Query Optimizer 38 / 56
  39. 39. Merge Join Sorted Sorted Ideal for Large Tables An Index Can Be Used to Eliminate the Sort aaa aab aac aad aaa aab aab aaf aaf aac aae Outer Inner Explaining the Postgres Query Optimizer 39 / 56
  40. 40. Pseudocode for Merge Join sort(outer); sort(inner); i = 0; j = 0; save_j = 0; while (i < length(outer)) if (outer[i] == inner[j]) output(outer[i], inner[j]); if (outer[i] <= inner[j] && j < length(inner)) j++; if (outer[i] < inner[j]) save_j = j; else i++; j = save_j; Explaining the Postgres Query Optimizer 40 / 56
  41. 41. Order of Joined Relations Is Insignificant EXPLAIN SELECT sample2.junk FROM sample2 JOIN sample1 ON (sample2.id = sample1.id); QUERY PLAN ------------------------------------------------------------------------ Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=36) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36) -> Sort (cost=842.29..867.20 rows=9963 width=4) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4) (8 rows) The most restrictive relation, e.g. sample2, is always on the outer side of merge joins. All previous merge joins also had sample2 in outer position. Explaining the Postgres Query Optimizer 41 / 56
  42. 42. Add Optimizer Statistics ANALYZE sample1; ANALYZE sample2; Explaining the Postgres Query Optimizer 42 / 56
  43. 43. This Was a Merge Join without Optimizer Statistics EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 43 / 56
  44. 44. Outer Joins Can Affect Optimizer Join Usage EXPLAIN SELECT sample1.junk FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN -------------------------------------------------------------------------- Hash Left Join (cost=131.76..148.26 rows=260 width=254) Hash Cond: (sample2.id = sample1.id) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4) -> Hash (cost=103.56..103.56 rows=2256 width=258) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258) (5 rows) Use of hashes for outer joins was added in Postgres 9.1. Explaining the Postgres Query Optimizer 44 / 56
  45. 45. Cross Joins Are Nested Loop Joins without Join Restriction EXPLAIN SELECT sample1.junk FROM sample1 CROSS JOIN sample2; QUERY PLAN ---------------------------------------------------------------------- Nested Loop (cost=0.00..7448.81 rows=586560 width=254) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254) -> Materialize (cost=0.00..13.90 rows=260 width=0) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0) (4 rows) Explaining the Postgres Query Optimizer 45 / 56
  46. 46. Create Indexes CREATE INDEX i_sample1 on sample1 (id); CREATE INDEX i_sample2 on sample2 (id); Explaining the Postgres Query Optimizer 46 / 56
  47. 47. Nested Loop with Inner Index Scan Now Possible EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------------------- Nested Loop (cost=0.00..16.55 rows=1 width=254) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (id = 33::oid) -> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258) Index Cond: (sample2.id = 33::oid) (5 rows) Explaining the Postgres Query Optimizer 47 / 56
  48. 48. Nested Loop Join with Inner Index Scan aag aar aai aay aag aas aar aaa aay aai aag No Setup Required Index Lookup Index Must Already Exist Outer Inner Explaining the Postgres Query Optimizer 48 / 56
  49. 49. Pseudocode for Nested Loop Join with Inner Index Scan for (i = 0; i < length(outer); i++) index_entry = get_first_match(outer[j]) while (index_entry) output(outer[i], inner[index_entry]); index_entry = get_next_match(index_entry); Explaining the Postgres Query Optimizer 49 / 56
  50. 50. Query Restrictions Affect Join Usage EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^aaa’; QUERY PLAN ------------------------------------------------------------------------------- Nested Loop (cost=0.00..21.53 rows=1 width=254) -> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258) Filter: (junk ˜ ’^aaa’::text) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) No junk rows begin with ’aaa’. Explaining the Postgres Query Optimizer 50 / 56
  51. 51. All ’junk’ Columns Begin with ’xxx’ EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^xxx’; QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=16.50..131.12 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=13.25..13.25 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258) Filter: (junk ˜ ’^xxx’::text) (6 rows) Hash join was chosen because many more rows are expected. The smaller table, e.g. sample2, is always hashed. Explaining the Postgres Query Optimizer 51 / 56
  52. 52. Without LIMIT, Hash Is Used for this Unrestricted Join EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 52 / 56
  53. 53. LIMIT Can Affect Join Usage EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 1; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..1.83 rows=1 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 53 / 56
  54. 54. LIMIT 10 EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 10; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..18.35 rows=10 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 54 / 56
  55. 55. LIMIT 100 Switches to Hash Join EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 100; QUERY PLAN ------------------------------------------------------------------------------------ Limit (cost=140.41..140.66 rows=100 width=258) -> Sort (cost=140.41..141.06 rows=260 width=258) Sort Key: sample2.id -> Hash Join (cost=15.85..130.47 rows=260 width=258) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (8 rows) Explaining the Postgres Query Optimizer 55 / 56
  56. 56. Conclusion http://momjian.us/presentations http://www.vivapixel.com/photo/14252 Explaining the Postgres Query Optimizer 56 / 56

×