Jueves ecpa

574 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
574
On SlideShare
0
From Embeds
0
Number of Embeds
301
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Homogenous correlation maps for the first three VARIMAX rotated principal components of the 12-month standardized precipitation index (SPI) for the study region (1973-2002).
  • 12-month lead-time self-organizing linear output (SOLO) forecasts of the first three VARIMAX rotated 12-month SPI principal component scores (Jul-1981 to Dec-2002). 95% confidence bounds derived from bootstrap resampling are also included for the SPI12 forecasts. Independent validation forecasts are shown for the period Jul-1990 to Jun-1993.
  • The spatial distribution in the study region of (a) RMSE, (b) the number of precipitation gauges, and (c) the standard deviation of precipitation (mm).
  • Jueves ecpa

    1. 1. Integración de sistemas deObservación y Modelaciónpara predicir desastres“naturales”y diseñar estrategias deAdaptación al cambio Ana P. Barros Duke University Lima, March 21, 2013
    2. 2. gestión sostenible del Agua Desastres Naturales  Cuando  Cuanta Lluvia  Donde  Como  Variabilidad  Incertidumbre
    3. 3. Sistemas de Observación son essenciales Datos de Satélite Sistemas de tierra
    4. 4. Global Precipitation Mission MeasurementTropical Rainfall Measurement Mission http://www.nasa.gov/mission_pages/GPM http://www.nasa.gov/mission_pages/TRMM
    5. 5. South American MonsoonDatos son disponibles para todo el mondo sin costo y acesso fácil
    6. 6. First Observations Central Andes San Pedro, Andes 2012 Rio Kospiñata 2011Financiado por la NSF
    7. 7. Modelación Datos Descritivos  Inundaciónes Precipitación Modelo  Erosion  Sequía Recursos Hídricos
    8. 8. Catchment-Scale Hydrological Response to Tropical Storms Natural LULC Tao and Barros, 2013 (J. Hydrology)
    9. 9. Predición de Inundaciones Radpidas Error: 0.13% Components Overland flow: 8.97% Interflow: 70.25% Baseflow: 17.81% Error: 1.25% Components Overland flow: 39.44% Interflow: 54.64% Baseflow: 4.72%
    10. 10. FlashFlood QPE Operational DemoTropical Storm Fay QPE and QPF [NFDB] Challenges Model Skill Lack of Data Data Latency
    11. 11. #2 – Nonlinearity – SE USA Precipitation Moisture Convergence Li, Li and Barros, Climate Dynamics 2013
    12. 12. Predición de Sequía a Término Longo• Measure of Drought Standardized Precipitation Index• Data Physics Statistical Relevance• Demonstration Data Independence, Length of Record Non-stationarity Material described in Barros and Bowden, 2008, J. Hydrology
    13. 13. Raingauge Data CSIRO PC 1 72.8% PC 2 7.2% PC 3 5.3%
    14. 14. Goal 12 month lead-time areal mean SPI12 Data Driven ANN Model F1 F2 1 2 3 4 5 6 7 8 9 10 11 12 ………..24 ***Length of Record ***Non-stationarity
    15. 15. Basin Average ANN OUTPUTS RMSE/R RMSE/R12-month Calibration Validation SPI PC Set Set 4.86 4.65 1 0.76 0.74 1.57 4.63 2 0.60 0.05 1.22 1.13 3 0.77 0.37
    16. 16. Adapatación ( la base científica)Sistemas de ObservaciónIntegración: COMO Funciona el Paisaje?Evaluación dinamica de recursos Gestión de riesgos
    17. 17. ¡Únete a esta iniciativa hemisférica!
    18. 18. Adapt. Lemos 2011
    19. 19. Desastres Naturales  Cambios Antropogénicos Monitoreo de Riesgo Gestión  Variabilidad Climática de Hoy Análisis de Riesgo Y Predicción de EventosCambios Climáticos  Projectiones de Cambio Climático Adaptación Adaptación ≡ Preparación
    20. 20. Processos de Formación de Lluvia Clausius-Clapeyron Variabilidad Interanual vapor pressure saturation vapor pressure Year September Rainfall Totals by Appalachian Mountains 350.0 Clouds Large-Scale Moisture Convergence 300.0Microphysics Heating (2) Local 250.0 Evapotranspiration / CCN (3) e Rainfall Total (mm) 200.0 ~ Td Temperature na La Ni (1) T AMO + 150.0 Cooling / LiftingFog, Snow & Rainfall 100.0 50.0 0.0 2008 2009 Year
    21. 21. Downscaling
    22. 22. Ciclos Climáticos…Dos series con Nilometer 622-1284 A.D.media y variancia H=0.91estadísticas igualesThe idea thatpersistent(0.5<H<1.0) H=0.5 “Ruído Blanco”movements in atime series tend tobe part of largertrends and cyclesmore often than theyare completelyrandom. From Koutsoyannis, 2004 (Mandelbrot and Wallis 1977, Hurst 1951, Barros and Evans 1996)

    ×