Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

FLOW - Far and Large Offshore Wind (Summary)


Published on

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

FLOW - Far and Large Offshore Wind (Summary)

  1. 1. FLOW: Far and Large Offshore Wind Summary 1 Far and Large Offshore WindFLOW
  2. 2. FLOW: Far and Large Offshore Wind 2 FLOW: Far and Large Offshore Wind 3 Far and Large Offshore Wind FLOW Dutch industry and knowledge institutes are pioneering a large- scale innovation program for the development of offshore wind energy. The Far and Large Offshore Wind program (FLOW) consists of an ambitious R&D plan and a demonstration wind farm 75 km off the Dutch coast, in 35 meters water depth. At this moment, no wind farms at such a distance from the coast in such a water depth exist in the world. The FLOW program will enable companies in The Netherlands to claim a leading position on the international market for offshore wind energy. The program is being developed by a consortium consisting of RWE, Eneco, TenneT, Ballast Nedam, Van Oord, IHC Merwede, 2-B Energy, XEMC Darwind, ECN and TU Delft.
  3. 3. FLOW: Far and Large Offshore Wind 4 FLOW: Far and Large Offshore Wind 5 Vision Te c h n o lo g i ca l lea de Rs h i pThe Netherlands has three reasons to invest heavily in offshore wind energy today: renewable energy Today, no offshore wind farms are operational at far-offshore locations anywhere in the world.goals, technological leadership and large opportunities on a rapidly developing market. While the technology for onshore wind energy is well developed, the technology for offshore wind farms is still in its infancy. The Netherlands has a strong knowledge position in wind energy due to R en ewa b l e e n e Rgy g oals the research and development that takes place in institutions like ECN and the TU Delft. The DutchBy the year 2020, the Dutch government aims to have installed 6,000 MW of offshore wind energy offshore industry has developed invaluable knowledge and experience in offshore technology for oilcapacity in the Netherlands to reach its renewable energy goals. Due to limitations such as shipping and gas exploration and production. If we act now, during the coming years we can develop a leadinglanes, oil and gas platforms, visual impact and ecology, a maximum of approximately 3,000 MW of the position in the area of offshore wind technology. The FLOW program will develop new, cutting-edgetotal of 6,000 MW can be installed within a 50-60 km distance from the shore. The remaining capacity technology that is necessary for economically viable generation of offshore wind energy.will have to be installed further away, “far-offshore”, in typical water depths of more than 30 meters,with larger challenges for foundations, installation and operation/maintenance. It is estimated thatthe four most important European offshore wind energy countries – the UK, Germany, Denmark andthe Netherlands – will have 31,000 MW of offshore wind energy capacity installed by 2020, of whichapproximately 40% will be installed far-offshore. The FLOW program will be instrumental in achievingthe goal of the Dutch government of 6,000 MW in the year 2020 (see figure 1), by accelerating thedevelopment of economically viable far-offshore wind energy technology.Figure 1 – FLOW will be instrumental to realizing the Dutch renewable energy goals Figure 2 – If we act now, we can become a technological leader in offshore wind – at this moment no wind farms are operational far-offshoreDutch renewable energy goals 2020 Far-offshore (>50-60 km) wind energy is Offshore wind farms in Europe – Distance to shore/year indispensible 140 2013: Hochsee Windpark Nordsee Operational Considering the interests of other 120 2010: BART 2015: Sandbank 24 phase 1Target 2020: CO2 reduction of 30% Under construction users, near shore locations (<50-60 kmcompared to 1990 2011: Nordlicher Grund 2015: He Dreiht off-coast, <30 m water depth) can only 100 Approved accommodate ~3,000 MW. 50-60 km Diameter indicates wind farm 2013: FLOWRealizing the target includes a W Limiting factors are: 12 Miles zone capacity [MW] Mrequirement of 20% renewable energy 80 0 00 - Special areas 0, >1 FA R OFFSHOR ETowards 2020 6,000 MW offshore wind - Oil and gas platforms 60 - Shipping routesenergy Distance to shore (KM) 40 N EA RSHOR E 2008: Amalia 2006: OWEZ ? Far-offshore locations offer room W 0M for more than 10,000 MW with the 20 ,00 least impact on other users and the ~3 environment 0Source: Innovatie Agenda Energie, DNV, ECN 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 Year Source: EWEA 2009, Ecorys 2009, Project websites, Roland Berger analysis
  4. 4. FLOW: Far and Large Offshore Wind 6 FLOW: Far and Large Offshore Wind 7 l aRge op poRTu n iTi e s on a Ra p i dly g Rowi n g m a R k e TWind energy is most viable in places with high mean wind speeds and low turbulence levels. construction, installation and maintenance companies – such as Ballast Nedam, Van Oord and IHCCompared to onshore conditions, offshore conditions are favorable in this respect. Because of the Merwede – are ideally positioned to claim a leading role in offshore wind energy. The country’slogistical challenges of offshore wind energy, to date most wind farms have been placed on land. knowledge and track record in soil and marine engineering gives these companies excellent support.However, the potential of onshore wind energy is limited due to the available space, and restrictions In the field of wind turbine design and manufacturing, several innovative start-ups have emergedregarding noise and visibility. Therefore, the European Wind Energy Association (EWEA) expects strong such as 2-B Energy and XEMC Darwind. The Dutch R&D institutions ECN and TU Delft house leadinggrowth of the installed capacity of offshore wind energy in the coming years. competences in wind energy R&D, and have led to innovative spin-off companies like AmpelmannThe Netherlands is in an ideal position to become one of the leaders in the rapidly developing far- (offshore access technology). Stimulating the far-offshore wind energy value chain in the Netherlandsoffshore wind market. It is blessed with a strategically advantageous geographic location; it borders will also encourage suppliers, such as blade manufacturing companies or offshore cable suppliers, toon the leading offshore wind energy countries and has direct access to large harbors, which are base themselves in or further expand into the Netherlands. The development of offshore wind willindispensable for the immense logistical operation necessary for the installation, operation and provide a sustainable revenue source for provision of parts and services related to the operation of themaintenance of wind farms (see figure 3). wind turbines, providing a boost for offshore logistic and maintenance companies. The FLOW program will support the Dutch value chain in claiming a leading position on the European offshore windBut the country’s potential goes beyond geography. It is home to many companies and institutions market, generating new sustainable employment in the Netherlands.with invaluable competences throughout the far-offshore wind energy value chain (see figure 4).Companies such as RWE and Eneco have already developed extensive and invaluable hands-onexperience in offshore wind farm development and operation. Due to their leading positions in theoffshore oil and gas exploration and production industry, the large Dutch offshore design, engineering,Figure 3 – The European offshore wind energy market will grow rapidly; The Netherlands has the ideal geographical location Figure 4 – The Netherlands has the potential to develop a very strong offshore wind value chainand ports with direct access Offshore wind energy value chain (under development) NON-EXHAUSTIVE Wind Wind turbine Wind turbine Offshore design Offshore Offshore Wind farm energy design manufacturing and construction & maintenance development R&D engineering installation and operation INDICATIVE ILLUSTRATIVETotal installed offshore capacity in Europe [MW] will Ideal location of the Netherlands among the mostincrease according to EWEA reference scenario important offshore wind energy countries Expected commissioning before 2015 74,500 EXPERIENCE 35,000 COMPETENCES AMBITION and/or 12,000 3,500 1,100 2007 2010 2015 2020 2025 Source: FLOWSource: EWEA reference scenario,, BWEA, Ecorys 2009, Project websites
  5. 5. FLOW: Far and Large Offshore Wind 8 FLOW: Far and Large Offshore Wind 9 Objectives ActivitiesThe first main objective of FLOW is acceleration. FLOW will speed up the deployment of offshore wind The activities of FLOW will consist of an R&D plan and the installation and operation of a demo windenergy to realize the 2020 6,000 MW target; as a first step, it will build a 100-300 MW far-offshore farm. The R&D plan will focus on the development of innovative, new technology for far-offshoredemonstration wind farm with 20-60 turbines, which will be operational by Q3 2013. wind farm design, support structures, far-offshore electrical systems and grid integration and offshoreTo achieve the first main objective, a significant cost reduction of far-offshore wind energy – the turbine development. These technologies will be demonstrated far-offshore in the FLOW demo farm.second main objective – is necessary. Cost reduction requires development of specific far-offshore For the testing and demonstration of new turbines, a separate turbine demonstration facility will becompetences. FLOW will reduce the costs associated with offshore wind energy by more than 20% made available in the demo wind farm, with room for 2-6 turbines (see figure 6). FLOW will activelyto improve the commercial viability of offshore wind energy. Figure 5 depicts the main objectives of work with the government and other initiatives to mobilize on- and nearshore test locations as well.FLOW.Figure 5 – FLOW aims to accelerate the development of offshore wind energy and to reduce the associated costOnshore Nearshore Far offshore <50-60 km off coast; >50-60 km off coast; Figure 6 – FLOW’s R&D plan will develop technology and innovative concepts that will be used in the demonstration wind farm typically <30 m water depth typically >30 m water depth R&D Plan Demo wind farm A C C E L E R AT E REDUCE COST R&D themes Far-offshore demonstration park Turbine demonstration facility 120 m1) 1 Wind farm design versnelling 100 m 1) 2 Support structures 3 Electrical systems and grid integration 4 Turbine development Proven turbine technology Prototype turbines1) Typical dimensions of a 5 MW offshore wind turbineSource: FLOW Source: FLOW
  6. 6. FLOW: Far and Large Offshore Wind 10 FLOW: Far and Large Offshore Wind 11 Implementation FLOW consortium RweFLOW has set the ambitious goals to commence the R&D plan in January 2010 and to have the FLOW The FLOW program links up with the appeal that The international energy company RWE is onedemo wind farm operational by Q3 2013. A measurement mast will be installed in Q2 2010 which will the Dutch Innovation Platform made during of Europe’s largest producers and suppliers ofprovide the necessary data to complete the design of the FLOW demo wind farm. The wind farm will the coast conference in spring 2008. By means electricity. RWE already has a strong presence inthen be installed in 2012-2013 and will be fully operational by Q3 2013 (earliest projection). Far-offshore of the ‘tulip island’ initiative, the Innovation the offshore wind energy market in the Unitedmeasurement, demonstration and validation will then take place during 2013-2014 and results will be Platform challenged the sector to come up with Kingdom. The company operates the 60 MWused to optimize models and concepts. innovative business cases for offshore energy North Hoyle wind farm off the Welsh coast andThe plans for FLOW are elaborated in a Business Plan, which was presented on September 2nd, 2009 to concepts. The FLOW consortium consists of eight will commission a second wind farm with 90the Minister of Economic Affairs during a meeting of the Dutch Innovation Platform, which is chaired Founding Fathers who, together, have invaluable MW of installed capacity at Rhyl Flats this year. Aby Prime Minister Balkenende. The FLOW consortium is engaged in a constructive dialogue with the knowledge, competencies and experience in further offshore wind farm, which is also plannedMinistry of Economic Affairs to further specify the FLOW Business Plan, and to explore options for the area of offshore wind energy: RWE, TenneT, off the coast of North Wales at Gwynt y Môr, willGovernment support for and cooperation in the program. Ballast Nedam, Van Oord, 2-B Energy, XEMC become one of the largest farms of its kind in the Darwind, ECN and the TU Delft (see figure 7). world, with a planned capacity of several hundred Eneco and IHC Merwede recently joined the MW. Moreover, RWE Innogy holds a 50% stake in consortium as new partners. Other new partners the Greater Gabbard offshore wind farm off theThe Founding Fathers and partners of the FLOW program on 2 September 2009, just after they presented the FLOW Business Plan can also join FLOW, provided they bring valuable east coast of England. On completion in 2011, thisto the Minister of Economic Affairs – from left to right: Johan van Wijland (Van Oord), Govert Hamers (IHC Merwede), Minister knowledge, competencies or experience to the wind farm will have a total capacity of 500 MW.Van der Hoeven of Economic Affairs, Kees van der Klein (ECN), Dolf Elsevier van Griethuyzen (Ballast Nedam), Mel Kroon (TenneT),Prime Minister Balkenende, Herbert Peels (2-B Energy), Dirk Jan van den Berg (TU Delft), Hans de Boer (Innovation Platform), Huib consortium. RWE Innogy is also looking to expand its offshoreMorelisse (RWE), Vincent van den Brekel (XEMC Darwind). Rens Knegt (Eneco) is not visible on the photo. production of wind energy to areas off the coast Figure 7 – The Founding Fathers and partners of FLOW represent essential parts of the offshore wind energy value chain – other new partners may join Founding Fathers and partners of the FLOW consortium Wind farm development and operation Electrical system and grid integration Offshore engineering, construction and maintenance Vessels and equipment for offshore installation and foundations Wind turbine design and manufacturing Wind energy R&D Source: FLOW
  7. 7. FLOW: Far and Large Offshore Wind 12 FLOW: Far and Large Offshore Wind 13 ball asT n edam Va n o o R dof mainland Europe. In Germany, for instance, the households with electricity generated from is planning to build the Innogy Nordsee In addition, Eneco has concluded power purchase Ballast Nedam is a Dutch multinational, active Van Oord is an international Dutch dredging1 wind farm with a capacity of about 960 MW agreements for a total amount of approximately in the building, construction and infrastructure and marine contractor. The company is a worldoff the German island Juist in the North Sea. In 700 MW with which it can supply nearly 500,000 sectors and aiming to become one of the most leader in dredging projects, marine constructionthe Netherlands, a licence has been requested for households with electricity. The land based prominent players in the European offshore projects and offshore activities, while alsothe Tromp Binnen wind farm with a capacity of Anna Vosdijkpolder wind farm (15 MW) became wind energy market. The company has a being an important player in offshore wind300 MW off the northern Dutch coast. operational in 2008, followed in 2009 by the St. special offshore wind energy division with energy. Van Oord’s activities as a management Antoinedijk wind farm (10 MW) in the city of extensive experience in the design, installation, contractor in the field of offshore wind energy en eco Halderberge. In Belgium, Eneco has a wind energy construction and development of offshore wind comprise the engineering, procurement andEneco is one of the three leading energy capacity of 80 MW. Eneco is also active in France farms. Ballast Nedam installed the first Dutch construction (EPC) of foundations and thecompanies in the Netherlands. Wind energy and Great Britain. It is expected that the British wind farm named Lely in 1994, followed by electrical part of wind farms. In the Netherlands,forms an important element of Eneco’s Tullo wind farm will become operational in 2010. Dronten in 1996, and OWEZ in 2006. Last year, Van Oord was responsible as DPC contractorsustainability strategy. Eneco expects that Ballast Nedam installed the foundations for two (Design, Procurement and Construction) for the Te n n e Tin 2020, 70% of the electricity supplied to its offshore wind farms in the United Kingdom. installation of the Prinsess Amalia wind farmcustomers will already be generated from The Transmission System Operator TenneT is the Ballast Nedam is currently involved in the off the coast of IJmuiden. Van Oord is currentlysustainable resources. In the Netherlands, Eneco Dutch electricity carrier. TenneT safeguards the German offshore wind energy project Baltic I. engaged as an EPC contractor in preparations forowns 100 land-based wind turbines with a total reliability and continuity of the electricity supply Ballast Nedam is also engaged in the Dutch R&D the Belwind Project off the coast of Zeebrugge,capacity of 120 MW and can supply an additional in the Netherlands. It also develops services and project We@Sea and recently developed a new Belgium.120 MW with the Princess Amalia wind farm tasks to further advance the electricity market concept for an environmentally-friendly concretein the North Sea. With its own wind turbines, and enable it to function properly. For example monopile foundation as part of the SwedishEneco already supplies more than 170,000 the development of a sustainable energy system. Kriegers Flak R&D project. Topview from HLV Svanen, installing a foundation at Egmond aan Zee wind farm – © photo Ballast Nedam Loading a 150 kV cable for Princess Amalia wind farm – © photo Van Oord
  8. 8. FLOW: Far and Large Offshore Wind 14 FLOW: Far and Large Offshore Wind 15 i hc me Rwe d e 2 -b e n e Rgy into operation in 2010 at the ECN test site in the high-grade knowledge and technology for aIHC Merwede is focused on the continuous 2-B Energy will bring a new design to market Wieringermeer polder. Unique characteristics sustainable energy system and brings this todevelopment of its design and construction for large dedicated offshore wind turbines with of this Dutch turbine are: (1) Custom-developed market. The special wind energy unit occupiesactivities for the specialized shipbuilding sector significant lower investment and operations for offshore applications (2) Low installation a strategic position between universities andin particular for the dredging and offshore costs. A holistic approach - based on component and maintenance costs (3) High availability and industry, covers all relevant wind energyindustries. It’s the world’s market leader in the reduction, material savings and extended lifetime high revenues at competitive purchase costs. disciplines and is one of Europe’s leading offshoreconstruction of specialist dredging equipment - has led to an innovative wind power plant The company is striving to become a major wind energy institutes.and is also recognized as an outstanding builder concept. The solution includes a 2-blade rotor, a global supplier of offshore wind turbines. This Tu de lf Tof complex, custom-built vessels for offshore truss tower support structure and a direct current statement is underlined by the recent partnershipconstruction. Offshore wind energy is one of power export system. The prototype will be put with the Chinese company XEMC Windpower. Delft University of Technology is a multilateralIHC Merwede’s focal points. The company into use during the first half of 2011. The new Chinese-Dutch company plans to start and multidisciplinary university of technology,has collected all its expertise in this area in a commercial operations from 2011. Together with where 15,000 students and 5,000 employees work Xe m c da Rwi n dspecialized center of excellence: ‘IHC Offshore its partners and suppliers, XEMC Darwind will on technical solutions and innovations for socialWind Energy’. The clients of IHC Merwede include XEMC Darwind, formerly known as Darwind, is create hundreds of jobs in the Netherlands, problems and the development of knowledge.major dredging companies, oil and gas exploration a design and development agency, and future mainly for development, assembly, logistics, Renewable energy, such as wind power, is one ofgroups, offshore contractors and government manufacturer specializing in ‘direct drive’ installation and in operation & maintenance. the main subjects of scientific research at Delft.authorities. It has a staff of approximately 2,800 technology for offshore wind turbines that will The research into wind energy in Delft is carried ec nat its locations in the Netherlands and has branch lead to lower operating and maintenance costs. out at the Delft University Wind Energy Researchoffices in China, India, the Middle East, Nigeria, XEMC Darwind is currently working on the third ECN is the Energy Research Centre of the Institute, DUWIND.Russia, Singapore, Slovakia, the United Kingdom generation of Direct Drive wind turbines. The Netherlands. It is the largest Dutch R&D instituteand the United States of America. prototype of this 5 MW turbine will be taken in the field of renewable energy. ECN developsApplication of scour protection at Princess Amalia wind farm – © photo Van Oord Access to a turbine with heave compensation at Egmond aan Zee wind farm – © photo Ampelmann
  9. 9. This is a publication of the FLOW consortium, issued at the presentation of the FLOW Business Planto the Minister of Economic Affairs and the Innovation Platform on September 2nd, 2009.www.flow-windpark.nlMeasurement mast Egmond aan Zee wind farm – © photo We@Sea, Jos Beurskens