Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Low Power Wireless Sensor Network Technologies and Standards for the Internet of Things

2,725 views

Published on

Presentation on Low Power Wireless Sensor Network Technologies and Standards for the Internet of Things given at Institute of Physics, Sensors & their Applications XVIII Conference, 12 September 2016

Published in: Technology
  • Very Nice, If you want more good Presentations Please visit www.ThesisScientist.com, Its a wonderful website for latest Presentations and Research
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Low Power Wireless Sensor Network Technologies and Standards for the Internet of Things

  1. 1. Low  Power Wireless  Sensor  Network   Technologies  and  Standards for  the Internet  of  Things IOP Institute  of  Physics   Sensors  &  their  Applications  XVIII Duncan  Purves Connect2  Systems duncan@connect2.io @purvesd https://uk.linkedin.com/in/duncanpurves
  2. 2. The  IoT  landscape  -­ One  size  doesn’t  fit  all Source: Goldman Sachs, IoT Primer, September 3, 2014; ‘Internet of Things: Making sense of the next mega-trend’ Broad  variety  of  wireless   standards,  industry  bodies,   technologies  for  different  types  of   networks: § Body  Area  Network  (BAN) § Body  Sensor  Network  (BSN) § Medical  Body  Area  Network   (MBAN) § Personal  Area  Network  (PAN) § Home  Area  Network  (HAN) § Nearby  Area  Network  (NAN) § Local  Area  Network  (LAN) § Wide  Area  Network  (WAN) § Global  Area  Network  (GAN)
  3. 3. Diversity – Industry  &  Standards  Bodies
  4. 4. Layer  1/2  Wireless  Network  Standards § IEEE  802.11  (WLAN) Ø Most  wireless-­capable  residential  devices  operate  at  a  frequency  of  2.4   GHz  under  802.11b  and  802.11g  or  5 GHz  under  802.11a. Ø Some  home  networking  devices  operate  in  both  radio-­band  signals  and   fall  within  the  802.11n  or  802.11ac  standards § IEEE  802.15  (WPAN) Ø Working  group  of  Institute  of  Electrical  and  Electronics  Engineers  (IEEE)   which  specifies  wireless  personal  area  network  (WPAN)  standards Ø Includes  seven  task  groups   Ø 802.15.1  (Bluetooth) Ø 802.15.3  (High  Rate  WPAN) Ø 802.15.4  (Low  Rate  WPAN) Ø 802.15.6  (WBAN) Ø 802.15.7  (Visible  Light  Communication)
  5. 5. Higher  Layer  Standards The  IEEE  802.15.4  technology  is  used  for  a  variety  of  different  higher   layer  standard  e.g.: § ZigBee § Wireless  Hart § MiWi § ISA100.11a § 6LoWPAN Ø IPv6 over  Low  power  Wireless  Personal  Area  Networks Ø Specified  by  Internet  Engineering  Task  Force  (IETF)
  6. 6. 6LoWPAN § Open  Standard  networking  technology   specification  Developed  by  the    Internet   Engineering  Task  Force  (IETF) § Every  node  has  its  own  IPv6  address § Originally  conceived  to  support  IEEE   802.15.4  low-­power  wireless  networks  in   the  2.4-­GHz  band § Now  being  adapted  and  used  over  a  variety   of  other  networking  media  including: Ø Sub-­1  GHz  low-­power  RF Ø Bluetooth  Smart  (BLE) Ø Power  Line  Control  (PLC) Ø Low-­power  Wi-­Fi § 6LoWPAN  adaptation  layer  provides: Ø IPv6  packet  encapsulation Ø IPv6  packet  fragmentation  and  reassembly Ø IPv6  header  compression Ø Link  layer  packet  forwarding COAP,  MQTT Websocket,  etc. IPv6  with  6LoWPAN IEEE  802.15.4  MAC IEEE  802.15.4  PHY LoWPAN  Adaption TCP UDP Application Transport Network Data  Link Physical 6LoWPAN  Stack  Example
  7. 7. 6LoWPAN  Network  Example Internet Server Cellular 3G,  LTE PDN Server Border   Router Server Node IPv6 IPv6  or  IPv4
  8. 8. Linear  Technologies  – SmartMesh  IPTM § Fully  Redundant  Wireless  Mesh  Routing Ø Compliant  to  6LoWPAN  and  802.15.4e  standards  (2.4  GHz  radio) § >99.999%  Data  Reliability Ø Time-­synchronised  +  channel  hopping § Ultra-­low  power Ø Devices  sleep  between  scheduled  communications,  typically  a  duty  cycle  of  <  1% § Automatic  node  joining  and  network  formation § Secure Ø End-­to-­end  128  bit  AES  encryption,  message  integrity  checking,  and  device  authentication http://www.linear.com/products/smartmesh_ip
  9. 9. Connect2  Systems  Deployment  Example Wireless   Sensor   Node Wireless   Sensor   Node Wireless   Sensor   Node Wireless   Sensor   Node Connect2  Systems LWM2M  Server Monitoring  Application Sensor   Data Wide  Area  Gateway Connect2  Systems Edge  Gateway IPv6/4 Cellular/Ethernet  Interface Wireless   Sensor   Network   Manager LWM2M  Client Smart  Objects MQTT   Broker Sensor   Network   Manager Interface Cellular/Ethernet  Router IoT  App   Platform Protocols FTP 802.15.4e 6LoWPAN Cellular Public/Private  Data  Network CoAP MQTT/FTP
  10. 10. Street-­based  wireless  sensors  and  parking  meters  collect   real-­time  parking-­space  occupancy  readings  and  payment   activity Streetline  Parking  Management Streetline,  Inc.  is  the  leading  provider  of  Smart  Parking  solutions  to  cities,   garages,  airports,  universities  and  other  private  parking  providers.  
  11. 11. HANDBRAKE STATUS ENGAGED BEARING TEMPERATURE REPLACE WHEELSET information  from  the  edge™ IONX  Freight  Rail  Monitoring IONX  LLC  is  a  developer  and  provider  of  ultralow  power  wireless   telematics  solutions  for  railcars,  providing  GPS  tracking,  asset  status  and   condition  monitoring  
  12. 12. “Thread  was  designed  with  one  goal  in   mind:   To  create  the  very  best  way  to  connect   and  control  products  in  the  home” Thread  Group
  13. 13. Thread  Design  Features § Specification  released  July  14,  2015 § Security  Architecture  to  make  it   simple  and  secure  to  add  and   remove  products § Designed  for  very  low  power   operation   § Uses  6LoWPAN  and  carries  IPv6   natively § Runs  over  standard  802.15.4  radios § Based  on  a  robust  mesh  network   with  no  single  point  of  failure § Designed  to  support  250+  products   per  network  for  the  home
  14. 14. Thread
  15. 15. Thread Thread  defines  how  data  is  sent  in  network  but  not  how  to  interpret  it
  16. 16. EnOcean § An  energy  harvesting  wireless  technology § Combines  micro  energy  converters  with  ultra  low  power  electronics § Enables  wireless  communications  between  battery  less  wireless  sensors,  switches,   controllers  and  gateways § Ratified  as  the  international  standard  ISO/IEC  14543-­3-­10 § Wireless  range  up  to  300  meters  in  the  open  and  up  to  30  meters  inside  buildings § Data  packet  only  14  bytes  long  and  are  transmitted  at  125  kbit/s § RF  energy  is  only  transmitted  for  the  1's  of  the  binary  data,  reducing  the  amount  of   power  required § Transmission  frequencies  used  for  the  devices  are  902 MHz,  928.35 MHz,  868.3 MHz   and  315 MHz https://www.enocean.com/en/home/
  17. 17. EnOcean Alliance § EnOcean,  Texas  Instruments,  Omnio,  Sylvania,  Masco,  and  MK  Electric  formed  the   EnOcean  Alliance  in  April  2008  as  a  non-­profit,  mutual  benefit  corporation § Aims  to  internationalise  this  technology,  and  is  dedicated  to  creating  interoperability   between  the  products  of  OEM  partners § More  than  250  companies  currently  belong  to  the  EnOcean  Alliance https://www.enocean-­alliance.org/en/home/
  18. 18. ZigBee ZigBee  Alliance   § Non-­profit  association  established  in  2002 § Driving  the  development  of  ZigBee  standards ZigBee  uses  the  PHY  and  MAC  defined  by  802.15.4 Markets: § Smart  Home § Connected  Lighting § Smart  Meters  -­ ZigBee  Smart  Energy Ø UK  DECC  announced  SMETS  2  which  cites  ZigBee  Smart  Energy  1.x § Retail
  19. 19. ZigBee  Stack  Layers Application  Layer Network  Layer Media  Access  Control  Layer  (MAC) Physical  Layer  (PHY) ZigBee IEEE   802.15.4 ZigBee   Device   Objects Application  Support  Sub  Layer Application  Framework Application Object  1 Application Object  N ……….....
  20. 20. ZigBee  Pro § Support  for  larger  networks  comprised  of  thousands  of  devices § Global  operation  in  2.4  GHz  Band  (IEEE  802.15.4) § Frequency  agile  operating  over  16  channels  in  the  2.4GHz  band § Regional  operation  in  the  915Mhz  (Americas)  and  868Mhz  (Europe) § Optional  -­ Green  Power  to  connect  energy  harvesting  or  self-­powered  devices
  21. 21. ZigBee  Application  Profiles § ZigBee  defines  application-­level  compatibility  with  application  profiles § Allows  multiple  OEM  vendors  to  create  interoperable  products § Describes  how  various  application  objects  connect  and  work  together,   such  as  lights  and  switches,  thermostats  and  heating  units § Application  profiles  can  be  public  or  private § Public  Profiles: Ø ZigBee  Building  Automation Ø ZigBee  Health  Care Ø ZigBee  Home  Automation Ø ZigBee  Input  Device Ø ZigBee  Network  Devices Ø ZigBee  Remote  Control Ø ZigBee  Retail  Services Ø ZigBee  Smart  Energy Ø ZigBee  Telecom  Services Ø ZigBee  3D  Sync  
  22. 22. ZigBee  3.0 § Unification  of  the  Alliance’s  wireless  standards  into  a  single  standard § Initial  release  of  ZigBee  3.0  includes: Ø ZigBee  Home  Automation, Ø ZigBee  Light  Link Ø ZigBee  Building  Automation Ø ZigBee  Retail  Services Ø ZigBee  Health  Care Ø ZigBee  Telecommunication  services § Currently  undergoing  testing § Enables  communication  and  interoperability  among  devices § Uses  ZigBee  PRO  networking
  23. 23. ZigBee  IP,  ZigBee  2030.5 and  920IP ZigBee  IP: § IPv6-­based  wireless  mesh  networking § Designed  to  support  ZigBee  2030.5  -­ formerly  ZigBee  Smart  Energy  2 Ø IP-­based  implementation  of  IEEE  2030.5-­2013   for  energy  management  in  Home  Area   Networks  (HANs) § Updated  to  include  920IP,  which  provides   specific  support  for Ø ECHONET  Lite Ø Japanese  Home  Energy  Management  systems
  24. 24. ZigBee,  EnOcean  &  Thread  Group ZigBee  and  EnOcean  Alliances  collaborate1 § Combining  the  benefits  of  EnOcean  energy  harvesting  wireless  solutions   with  ZigBee  3.0  for  worldwide  applications § Define  the technical  specifications  required  to  combine  standardized   EnOcean  Equipment  Profiles  (EEPs)  with  the ZigBee  3.0  solution ZigBee  Alliance  and  Thread  Group  collaborate2,3 § Creating  End-­to-­End  IoT  Product  Development  Solution § Brings  ZigBee’s  Applications  Library  to  Thread  Group’s  IP  Network  Protocol § Roadmap  for  specifications,  branding,  and  a  test  and  certification  program 1.  ZigBee  Press  Release,  Dec  2015: http://www.zigbee.org/zigbee-­and-­enocean-­alliances-­collaborate-­to-­combine-­benefits-­of-­enocean-­energy-­harvesting-­wireless-­with-­zigbee-­3-­0/ 2.  .  ZigBee  Press  Release,  Apr  2015 http://www.zigbee.org/zigbee-­alliance-­press-­release-­zigbee-­alliance-­and-­thread-­group-­collaborate-­to-­aid-­development-­of-­connected-­home-­products/ 3.  2.  .  ZigBee  Press  Release,  Jan  2016 http://www.zigbee.org/zigbee-­alliance-­creating-­end-­to-­end-­iot-­product-­development-­solution-­that-­brings/
  25. 25. ZigBee  – Smart  Street  Lighting § Mayflower,  part  of  SSE,  have  installed  250,000  nodes  across  UK § 150,000  nodes  across  the  Hampshire  County § Since  2010  it  has  reduced  Hampshire’s  street  lighting  energy   consumption  by  21GW/hr per  annum Ø Equates  to  a  reduction  of  41%  -­ or  enough  electricity  to  power  3,500  homes  for  a  year Source:  Mayflower  Complete  Lighting  Control:  http://www.mayflowercontrol.com/
  26. 26. Wireless  Wide  Area  Networks Cellular  Networks § GPRS,  EDGE § UMTS  (3G)  HSPA+ § LTE  (4G)  Long  Term  Evolution Low-­Power  Wide-­Area  Network (LPWAN) § Ultra  Narrow  Band  (UNB)  from  Sigfox § Weightless,  from  the  Weightless  SIG § LoRaWAN,  Long  Range  WAN,  from  the  LoRa  Alliance Cellular  IoT § LTE-­M  LTE  for  M2M  (1.4  MHz) § EC-­GSM    Extended  Coverage  GSM § Narrowband  IoT
  27. 27. Sigfox § French  M2M/IoT  Network  Operator  and  technology  company § Uses UNB  (Ultra  Narrow  Band)  based  radio  technology  to  connect   devices  to  global  network § Seeking  to  develop  an  international  presence  with  partners § Seeks  to  differentiate  itself  as  a  low  cost  alternative  to  cellular  and  a   low  power  solution
  28. 28. Sigfox Technology § Uses  ISM  bands  (license-­free  frequency  bands)   § Uses  the  most  popular  European  ISM  band  on  868  MHz  (as  defined  by   ETSI  and  CEPT)   § Uses  ISM  band  902MHz  in  the  USA § Up  to  140  messages  per  object  per  day § Payload  size  for  each  message  is  12  bytes § European  regulation  governing  the  868MHz  band  enforces  a   transmission  duty  cycle  of  1% Ø A  unique  device  is  therefore  not  allowed  to  emit  more  than  1%  of  the  time  each   hour Ø Since  emission  of  a  message  can  take  up  to  ~6  seconds,  this  allows  up  to  6   messages  per  hour § Long  range  30-­50km  in  rural  areas § Range  reduced  to  between  3  and  10km  in  urban  areas § Communication  with  buried,  underground  equipment  possible
  29. 29. Sigfox  Networks  Operators Vodafone,  Huawei  Trial  Pre-­Standard   NB-­IoT
  30. 30. Sigfox  UK  Partner  Arqiva Coverage § Birmingham § Bristol § Edinburgh § Glasgow § Leeds § Leicester § Liverpool § London § Manchester § Sheffield
  31. 31. Weightless Weightless  is  both  the  name  of  a  group,  the  Weightless  Special  Interest   Group  (SIG),  and  the  technology Weightless  SIG  is  a  non-­profit  global  standards  organisation Delivers wireless  connectivity  for  low  power,  wide  area  networks  (LPWAN)
  32. 32. Weightless  Architectural  overview Internet Network   Manager Base  station   interface Air  interface Synchronisation   database Client  information   /  management   system
  33. 33. Three  Open  Standards  – Weightless-­W,  -­N,  -­P Weightless-­W Weightless-­N Weightless-­P Frequency  Band TV  White  Space License-­exempt  ISM   spectrum License-­exempt  sub-­GHz   ISM/SRD   470MHz–790MHz 868MHz  and  915MHz 169/433/470/780/ 868/915/923  MHz   Data  Rate 1  Kbps  to  10Mbps Up  to  500  bps Adaptive  data  rate  – 200   bps  to  100  kbps Range 5km+ 5Km+ 2Km+ Battery  Life 3-­ 5  years 10  Years 3-­8  Years Directionality 2-­way 1-­way 2-­way Support  for  over-­the-­air   firmware  upgrade  and   security  key  negotiation  or   replacement
  34. 34. Nwave  -­ Weightless-­N    Network  Deployments § Copenhagen  &  Esbjerg Ø Smart  City  network § London Ø Has  been  deployed  in  conjunction  with  the  Digital  Catapult
  35. 35. LoRa,  LoRaWAN  and  the  LoRa  Alliance § LoRa® is  the  physical  layer  (OSI  Layer  1)  or  the  wireless  modulation  utilized  to  create   the  long  range  communication  link § LoRa® is Proprietary  technology  based  on  chirp  spread  spectrum  modulation Ø Patents/IP  is  owned  and  licensed  by  Semtech § LoRaWAN defines  the  MAC communication  protocol  and  system  architecture  for  the   network  that  the  LoRa  Alliance  is  standardizing  for  Low  Power  Wide  Area  Networks   (LPWAN)   Source:    https://www.lora-­alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf Physical  Layer (PHY)
  36. 36. LoRaWAN   &  LoRa  Alliance § LoRa  Alliance an  open,  non-­profit  association  of  members § Founded  in  March  2015  at  Mobile  World  Congress § Standardising  the  LoRaWAN  specification § Intended  for  wireless  battery  operated  ‘Things’  in  regional,  national  or  global  network § Allows  long  range,  low  bit  rate  communication  to  and  from  connected  objects
  37. 37. LoRa  Alliance § An  open,  non-­profit   association  of  members § Founded  in  March  2015  at   Mobile  World  Congress
  38. 38. LoRaWAN Ø Secure  bi-­directional  communication Ø Data  rates  range  from  0.3  kbps  to  50  kbps Ø Network  architecture  is  typically  laid  out  in  a  star-­of-­stars  topology Ø Gateways  are  a  transparent  bridge  relaying  messages  between  end-­devices  and  a  central   network  server  in  the  back-­end Source:    https://www.lora-­alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
  39. 39. Device  Classes  – Not  All  Nodes  Are  Created  Equal   Source:    https://www.lora-­alliance.org/portals/0/documents/whitepapers/LoRaWAN101.pdf
  40. 40. LoRaWAN  in  the  UK § Glasgow  -­ covering  12km2 of  the  city § Collaborative  project  involving  Stream  Technologies,  Semtech  Inc,  Boston  Networks   and  CENSIS § Working  with  Glasgow  University,  Strathclyde  University  and  Glasgow  Caledonian   University http://www.scotsman.com/news/glasgow-­universities-­pioneer-­internet-­of-­things-­network-­1-­4169807
  41. 41. The  Things  Network  – based  on  LoRaWAN
  42. 42. The  Things  Network  Oxford  &  Flood  Network Source:  Ben  Ward,  TTN  Oxford  and  Flood  Network: http://thethingsnetwork.org/c/oxford http://flood.network/
  43. 43. Cellular  IoT Three  tracks  have  been  standardized  in  3GPP  for  Cellular  IoT: § LTE  MTC  Cat  M1 an  evolution  of  LTE  optimized  for  IoT § EC-­GSM-­IoT Extended  Coverage  GSM Ø Evolutionary  approach  being  standardized  in  GSM  Edge  Radio  Access  Network  (GERAN)  Rel.  13 § NB-­IoT  Cat  M2 Narrowband  IoT   Ø Part  of  3GPP  RAN  Rel.  13
  44. 44. 3GPP  NB-­IoT  Modes  of  Operation NB-­IoT  supports  3  different  modes  of  operation:   § ‘Stand-­alone  operation’  utilizing  for  example  the  spectrum  currently  being  used  by  GERAN   systems  as  a  replacement  of  one  or  more  GSM  carriers § ‘Guard  band  operation’ utilizing  the  unused  resource  blocks  within  a  LTE  carrier’s  guard-­band   § ‘In-­band  operation’ utilizing  resource  blocks  within  a  normal  LTE  carrier Image  source:  https://www.ericsson.com/research-­blog/lte/narrowband-­iot-­cloud/
  45. 45. 3GPP  User  Equipment  Category  Comparison 3GPP  Release 8 12 13 13 Cat  1 Cat  0 Cat  M1 Cat  M2 Downlink  peak  rate  (Mbs) 10 1 1 ~ 0.2 Uplink  Peak rate 5 1 1 ~ 0.2 Duplex Mode Full Half Half  or  Full Half UE  receive  bandwidth 20 20 1.4 0.18 UE  Transmit  power  (dBm) 23 20  or  23 20 23 Relative  Modem  Complexity 100% 50% 20-­ 25% 10% Source:  https://www.ericsson.com/research-­blog/internet-­of-­things/cellular-­iot-­alphabet-­soup/
  46. 46. 3GPP  Cellular  NB-­IoT  Features Source:   http://www.telecomasia.net/pdf/Huawei/Huawei_13_NarrowBand_IoT_Wide_Range_Opportunities.pdf
  47. 47. Cellular  NB-­IoT  Proof  of  Concept From  – “Vodafone  and  NB-­IoT”: http://www.gsma.com/connectedliving/wp-­content/uploads/2015/12/Presentation-­3_Vodafone-­keynote-­v5.pdf
  48. 48. Cellular  NB-­IoT  Proof  of  Concept From  – “Vodafone  and  NB-­IoT”: http://www.gsma.com/connectedliving/wp-­content/uploads/2015/12/Presentation-­3_Vodafone-­keynote-­v5.pdf
  49. 49. NB-­IoT  -­ Vodafone  Timeline From  – “Vodafone  and  NB-­IoT”: http://www.gsma.com/connectedliving/wp-­content/uploads/2015/12/Presentation-­3_Vodafone-­keynote-­v5.pdf
  50. 50. Summary There  are  many  competing   technologies  and  standards! One Size does Not  fit  All Duncan  Purves Connect2  Systems duncan@connect2.io @purvesd https://uk.linkedin.com/in/duncanpurves

×