Biotransformation(Metabolism) of Drugs
A.    General properties1. Biotransformation is a major mechanism for drug   elimination;•    Results of biotransformation...
Results of biotransformation
2.    Many drugs undergo     – several sequential biotransformation reactions.     – Biotransformation is catalyzed by spe...
4. Biotransformation of drugs can be affected by many   parameters, including:  A.   prior administration of the drug in q...
5. Possible consequences of biotransformation   include the production of:  –   inactive metabolites (most common)  –   me...
• Metabolites are often more polar than the parent  compounds.• This increased polarity may lead to:   – a more rapid rate...
B.    Classification of biotransformation reactions1. Reactions that involve enzyme-catalyzed   biotransformation of the d...
2. Reactions that include conjugation reactions, which   involve the enzyme-catalyzed combination of a drug (or   drug met...
Drug metabolism reactions :
C.       Enzymes catalyzing phase I biotransformation                          reactions Enzymes catalyzing phase I biotr...
 Enzymes catalyzing phase II biotransformation  reactions include:   – glucuronyl transferase (glucuronide conjugation)  ...
• Location of these enzymes:   – numerous tissues   – some are present in plasma.• Subcellular locations include:   – cyto...
1.    Cytochrome P-450 monooxygenase                  (mixed function oxidase)a.   General features•    A large number of ...
•   The cytochrome P-450 families are referred to using    an arabic numeral, e.g., CYP1, CYP2, etc.•   Each family has a ...
•   Cytochrome P-450 catalyzes numerous reactions,    including:    –   aromatic and aliphatic hydroxylations    –   dealk...
•    The CYP3A subfamily is:    – responsible for up to half of the total cytochrome P-      450 in the liver    – account...
representative P450 isozymes.
b. Localization• The primary location of cytochrome P-450 is the liver,• Other tissues, including:   – the adrenals   – ov...
c.    Mechanism of reaction1.    In the overall reaction:     – the drug is oxidized     – oxygen is reduced to water.•   ...
Metabolism of phenytoin :
Biotransformation (metabolism) of drugs
Upcoming SlideShare
Loading in …5
×

Biotransformation (metabolism) of drugs

35,730 views

Published on

Published in: Health & Medicine
1 Comment
63 Likes
Statistics
Notes
No Downloads
Views
Total views
35,730
On SlideShare
0
From Embeds
0
Number of Embeds
97
Actions
Shares
0
Downloads
1,112
Comments
1
Likes
63
Embeds 0
No embeds

No notes for slide

Biotransformation (metabolism) of drugs

  1. 1. Biotransformation(Metabolism) of Drugs
  2. 2. A. General properties1. Biotransformation is a major mechanism for drug elimination;• Results of biotransformation: – Production of metabolites that are more polar than the parent drug – usually terminates the pharmacologic action of the parent drug – After phase I reactions, similar or different pharmacologic activity, or toxicologic activity.
  3. 3. Results of biotransformation
  4. 4. 2. Many drugs undergo – several sequential biotransformation reactions. – Biotransformation is catalyzed by specific enzyme systems2. Sites of biotransformation: – The liver: the major site – other tissues.
  5. 5. 4. Biotransformation of drugs can be affected by many parameters, including: A. prior administration of the drug in question or of other drugs B. diet C. hormonal status D. genetics E. disease (e.g., decreased in cardiac and pulmonary disease) F. age and developmental status G. liver function
  6. 6. 5. Possible consequences of biotransformation include the production of: – inactive metabolites (most common) – metabolites with increased or decreased potencies – metabolites with qualitatively different pharmacologic actions – toxic metabolites – active metabolites from inactive prodrugs.
  7. 7. • Metabolites are often more polar than the parent compounds.• This increased polarity may lead to: – a more rapid rate of clearance because of possible secretion by acid or base carriers in the kidney – it may lead to decreased tubular reabsorption.
  8. 8. B. Classification of biotransformation reactions1. Reactions that involve enzyme-catalyzed biotransformation of the drug without any conjugations.• Phase I reactions include: – oxidations – reductions – hydrolysis reactions• they introduce a functional group (e.g., -OH) that serves as the active center for sequential conjugation in a phase II reaction.
  9. 9. 2. Reactions that include conjugation reactions, which involve the enzyme-catalyzed combination of a drug (or drug metabolite) with an endogenous substance.• Phase II reactions require: – a functional group—an active center—as the site of conjugation with the endogenous substance. – energy indirectly for the synthesis of “activated carriers,” the form of the endogenous substance used in the conjugation reaction (e.g., UDP-glucuronate).
  10. 10. Drug metabolism reactions :
  11. 11. C. Enzymes catalyzing phase I biotransformation reactions Enzymes catalyzing phase I biotransformation reactions include: – cytochrome P-450 – aldehyde and alcohol dehydrogenase – deaminases – esterases – amidases – epoxide hydratases
  12. 12.  Enzymes catalyzing phase II biotransformation reactions include: – glucuronyl transferase (glucuronide conjugation) – sulfotransferase (sulfate conjugation) – transacylases (amino acid conjugation) – acetylases – ethylases – methylases – glutathione transferase.
  13. 13. • Location of these enzymes: – numerous tissues – some are present in plasma.• Subcellular locations include: – cytosol – mitochondria – endoplasmic reticulum• Only those enzymes located in the endoplasmic reticulum are inducible by drugs
  14. 14. 1. Cytochrome P-450 monooxygenase (mixed function oxidase)a. General features• A large number of families (at least 18 in mammals) of cytochrome P-450 (abbreviated “CYP”) enzymes exists• each member of which catalyzes the biotransformation of a unique spectrum of drugs• some overlap in the substrate specificities.• This enzyme system is the one most frequently involved in phase I reactions.
  15. 15. • The cytochrome P-450 families are referred to using an arabic numeral, e.g., CYP1, CYP2, etc.• Each family has a number of subfamilies denoted by an upper case letter, e.g., CYP2A, CYP2B, etc.• The individual enzymes within each subfamily are denoted by another arabic numeral, e.g., CYP3A1, CYP3A2, etc.
  16. 16. • Cytochrome P-450 catalyzes numerous reactions, including: – aromatic and aliphatic hydroxylations – dealkylations at nitrogen, sulfur, and oxygen atoms – heteroatom oxidations at nitrogen and sulfur atoms – reductions at nitrogen atoms – ester and amide hydrolysis
  17. 17. • The CYP3A subfamily is: – responsible for up to half of the total cytochrome P- 450 in the liver – accounts for approximately 50% of the metabolism of clinically important drugs. – CYP3A4 is a particularly abundant enzyme.
  18. 18. representative P450 isozymes.
  19. 19. b. Localization• The primary location of cytochrome P-450 is the liver,• Other tissues, including: – the adrenals – ovaries and testis – tissues involved in steroidogenesis and steroid metabolism.• The enzymes subcellular location is the endoplasmic reticulum.
  20. 20. c. Mechanism of reaction1. In the overall reaction: – the drug is oxidized – oxygen is reduced to water.• Reducing equivalents are provided by nicotinamide adenine dinucleotide phosphate (NADPH), and generation of this cofactor is coupled to cytochrome P-450 reductase.
  21. 21. Metabolism of phenytoin :

×