SlideShare a Scribd company logo
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 1
ΠΛΗ30 - ∆ΙΑΓΩΝΙΣΜΑ 8
ΘΕΜΑ 1: (Μονάδες 20/20)
(Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους καθώς το n τείνει στο άπειρο:
1)log(
4
)(loglog
3
2
2
1
1
2)(
2log)(
2)(
)(
−+
−
−
=
+=
=
=
nn
nn
n
nf
nnf
nf
nnf
n
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 2
(Β) Για την επίλυση ενός προβλήµατος έχουµε στη διάθεσή µας τέσσερις αλγόριθµους:
Ο αλγόριθµος Α για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δύο υποπροβλήµατα µεγέθους
n/7 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n2
Ο αλγόριθµος Β για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά εκατό υποπροβλήµατα
µεγέθους n/10 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n1/2
.
Ο αλγόριθµος Γ για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει ένα υποπρόβληµα µεγέθους n-1 και βρίσκει
την λύση του αρχικού προβλήµατος σε χρόνο logn.
Να βρεθούν οι ασυµπτωτικοί χρόνοι επίλυσης του προβλήµατος για κάθε αλγόριθµο και να επιλέξετε τον
ταχύτερο αλγόριθµο.
Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και
f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις:
log log
( ) ( ), ( )b ba a
(1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−−
= Θ= Θ= Θ= Θ
log log
( ) ( ), ( log )b ba a
(2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ
log
( ) ( ), ,
( ( )).
b a
0
0
(3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια
n
ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n
b
εεεε++++
= Ω= Ω= Ω= Ω
    
≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ    
    
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 3
ΘΕΜΑ 2: (Μονάδες 20/20)
(1) Εξετάστε αν:
)5(ω2.
)(log.Α log
nn
n
nOnn
=Β
=
(2) Μας δίνουν µια σειρά από αντικείµενα 1, 2, 3, … , n, µε αντίστοιχες αξίες a[1], a[2], a[3], …, a[n], αντίστοιχα,
οι οποίες είναι όλες θετικές. Πρέπει να επιλέξουµε υποσύνολο αντικειµένων µε το µέγιστο δυνατό άθροισµα
αξιών. Η λύση όµως πρέπει να ικανοποιεί τον εξής περιορισµό: αν επιλεγεί το αντικείµενο i τότε µένει εκτός το
αµέσως προηγούµενό του αντικείµενο, i-1.
(Α) Περιγράψτε αναδροµικό αλγόριθµο που επιστρέφει το µέγιστο άθροισµα αξιών.
(Β) Γράψτε την αναδροµική εξίσωση χρονικής πολυπλοκότητας του αλγορίθµου.
(Γ) Περιγράψτε αλγόριθµο ∆υναµικού Προγραµµατισµού που επιστρέφει το µέγιστο άθροισµα αξιών (σχεδιασµό
της αναδροµικής εξίσωσης και χρήση της για αποµνηµόνευση επιµέρους λύσεων σε πίνακα).
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 4
ΘΕΜΑ 3: (Μονάδες 20/20)
(A) Βρείτε µια κανονική έκφραση για τη γλώσσα που αναγνωρίζει το αυτόµατο του παρακάτω σχήµατος.
(B) Μετατρέψτε το παραπάνω µη ντετερµινιστικό (µη αιτιοκρατικό) αυτόµατο µε ε κινήσεις σε µη ντετερµινιστικό αυτόµατο χωρίς ε
κινήσεις.
(Γ) Μετατρέψτε το µη ντετερµινιστικό αυτόµατο του ερωτήµατος Β σε ντετερµινιστικό.
(∆) Ελαχιστοποιήστε τις καταστάσεις του αυτοµάτου του ερωτήµατος Γ και δείξτε ότι δεν υπάρχει άλλο ντετερµινιστικό πεπερασµένο
αυτόµατο µε λιγότερες καταστάσεις που να δέχεται την ίδια γλώσσα, βρίσκοντας ένα κατάλληλο πλήθος συµβολοσειρών ανά δύο
διακρινόµενων.
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 5
2. Ποια από τις παρακάτω γλώσσες είναι κανονική και ποια όχι; Για να αποδείξετε ότι κάποια
από τις γλώσσες δεν είναι κανονική χρησιµοποιέιστε το λήµµα της άντλησης. Για να αποδείξετε
ότι είναι κανονική δώστε την αντίστοιχη κανονική έκφραση.
A = { | w ∈ 0,1 ∗
, | | 1 }
Β = {	0 1 	|	1 2
Γ = {	0 1 	|		 2
∆ = {	1 0 1 	 | 2 }
Το Λήµµα Άντλησης για Κανονικές Γλώσσες:
Έστω µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε ∈ µε | | να
µπορεί να γραφεί στην µορφή όπου για τις συµβολοσειρές , και ισχύει:
| |
∈ για κάθε φυσικό !
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 6
ΘΕΜΑ 4: (Μονάδες 20/20)
Ποια από τις παρακάτω γλώσσες είναι χωρίς συµφραζόµενα και ποια δεν είναι;
L1 = { | w ∈ 0,1 ∗
}
L2 = { 			 | w ∈ 0,1 ∗
}
(A) Για την γλώσσα που είναι χωρίς συµφραζόµενα:
(1) ∆ώστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της.
(2) ∆ώστε ντετερµινιστικό αυτόµατο στοίβας που αναγνωρίζει τις συµβολοσειρές της:
a. Περιγράψτε άτυπα τη λειτουργία του Μ.
b. ∆ώστε την πλήρη περιγραφή του Μ (σύνολο καταστάσεων, αλφάβητα εισόδου και στοίβας,
αρχική κατάσταση, αρχικό σύµβολο στοίβας, συνάρτηση µετάβασης και σύνολο τελικών
καταστάσεων). Για την περιγραφή της συνάρτησης µετάβασης µπορείτε να χρησιµοποιήσετε
πίνακα.
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 7
(Β) Για την γλώσσα που δεν είναι χωρίς συµφραζόµενα,δώστε τυπική απόδειξη µε το 2ο
λήµµα άντλησης:
Το Λήµµα Άντλησης για Γλώσσες Ανεξάρτητες Συµφραζοµένων
Έστω " µια άπειρη γλώσσα ανεξάρτητη συµφραζοµένων. Τότε υπάρχει ένας αριθµός (µήκος άντλησης)
τέτοιος ώστε κάθε s ∈ " µε |s| να µπορεί να γραφεί στην µορφή $ %& '( όπου για τις συµβολοσειρές
%, &, , ' και ( ισχύει:
|& '|
|&'| ) 0
%& ' ( ∈ " για κάθε φυσικό 0
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 8
ΘΕΜΑ 5: (Μονάδες 20/20)
Α: Έστω αλφάβητο Σ={0,1} και η γλώσσα: " 0 1 |	 0 . Να κατασκευάσετε µηχανή Turing T µε αλφάβητο
Σ0={0,1,#,$,Υ,Ν} που θα αποφασίζει την γλώσσα L. H µηχανή θα ξεκινά µε σχηµατισµό #w# για κάποιο ∈ *∗
.
(1) ∆ώστε άτυπη περιγραφή της παραπάνω µηχανής Turing
(2) ∆ώστε το γράφηµα ροής
(3) ∆ώστε το διάγραµµα καταστάσεων
Β: ∆ίνεται η γλώσσα L={M,q | η µηχανή Turing Μ µεταβαίνει στην q µε κάθε είσοδο}. ∆είξτε ότι η L δεν είναι
επιλύσιµη δεδοµένου ότι η γλώσσα L’={M,w | H M µε είσοδο w τερµατίζει} δεν είναι επιλύσιµη.
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 9
ΘΕΜΑ 6: (Μονάδες 20/20)
Αποδείξτε ότι το πρόβληµα D3SAT είναι ΝΡ-πλήρες. Για την απόδειξη χρησιµοποιήστε αποκλειστικά το γνωστό
ΝΡ-πλήρες πρόβληµα 3SAT. Ακολουθούν οι ορισµοί των προβληµάτων.
3SAT: ∆ίνεται λογική έκφραση Φ σε Συζευκτική Κανονική Μορφή, που ορίζεται σε n µεταβλητές και αποτελείται
από m προτάσεις, µε κάθε πρόταση της να περιέχει ακριβώς τρεις µεταβλητές. Υπάρχει ανάθεση λογικών τιµών
που ικανοποιεί την Φ;
D3SAT: ∆ίνεται λογική έκφραση Φ σε Συζευκτική Κανονική Μορφή, που ορίζεται σε n µεταβλητές και
αποτελείται από m προτάσεις, µε κάθε πρόταση της να περιέχει ακριβώς τρεις µεταβλητές. Υπάρχουν
τουλάχιστον δύο αναθέσεις λογικών τιµών που ικανοποιούν την Φ;

More Related Content

What's hot

ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.2
ΠΛΗ30 ΜΑΘΗΜΑ 3.2ΠΛΗ30 ΜΑΘΗΜΑ 3.2
ΠΛΗ30 ΜΑΘΗΜΑ 3.2
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.3
ΠΛΗ30 ΜΑΘΗΜΑ 3.3ΠΛΗ30 ΜΑΘΗΜΑ 3.3
ΠΛΗ30 ΜΑΘΗΜΑ 3.3
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
Dimitris Psounis
 
ΠΛΗ20 ΤΕΣΤ 26
ΠΛΗ20 ΤΕΣΤ 26ΠΛΗ20 ΤΕΣΤ 26
ΠΛΗ20 ΤΕΣΤ 26
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
Dimitris Psounis
 
ΠΛ
ΠΛΠΛ
ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
Dimitris Psounis
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
Dimitris Psounis
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8
Dimitris Psounis
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
Dimitris Psounis
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
Dimitris Psounis
 
Διαγώνισμα εξισώσεις - Ανισώσεις
Διαγώνισμα εξισώσεις - ΑνισώσειςΔιαγώνισμα εξισώσεις - Ανισώσεις
Διαγώνισμα εξισώσεις - Ανισώσεις
Μάκης Χατζόπουλος
 
ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24
Dimitris Psounis
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7
Dimitris Psounis
 

What's hot (20)

ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.2
ΠΛΗ30 ΜΑΘΗΜΑ 3.2ΠΛΗ30 ΜΑΘΗΜΑ 3.2
ΠΛΗ30 ΜΑΘΗΜΑ 3.2
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 4
 
ΠΛΗ30 ΜΑΘΗΜΑ 3.3
ΠΛΗ30 ΜΑΘΗΜΑ 3.3ΠΛΗ30 ΜΑΘΗΜΑ 3.3
ΠΛΗ30 ΜΑΘΗΜΑ 3.3
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 2
 
ΠΛΗ20 ΤΕΣΤ 26
ΠΛΗ20 ΤΕΣΤ 26ΠΛΗ20 ΤΕΣΤ 26
ΠΛΗ20 ΤΕΣΤ 26
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5
 
ΠΛ
ΠΛΠΛ
ΠΛ
 
ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1
 
ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2ΠΛΗ30 ΤΕΣΤ 2
ΠΛΗ30 ΤΕΣΤ 2
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
 
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ20 ΕΠΑΝΑΛΗΨΗ 8
 
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6ΠΛΗ20 ΜΑΘΗΜΑ 3.6
ΠΛΗ20 ΜΑΘΗΜΑ 3.6
 
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8
ΠΛΗ20 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 3.8
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1ΠΛΗ30 ΜΑΘΗΜΑ 1.1
ΠΛΗ30 ΜΑΘΗΜΑ 1.1
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 9
 
Διαγώνισμα εξισώσεις - Ανισώσεις
Διαγώνισμα εξισώσεις - ΑνισώσειςΔιαγώνισμα εξισώσεις - Ανισώσεις
Διαγώνισμα εξισώσεις - Ανισώσεις
 
ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24ΠΛΗ20 ΤΕΣΤ 24
ΠΛΗ20 ΤΕΣΤ 24
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7
 

Viewers also liked

ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3
Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5
Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2
Dimitris Psounis
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 15
ΠΛΗ30 ΤΕΣΤ 15ΠΛΗ30 ΤΕΣΤ 15
ΠΛΗ30 ΤΕΣΤ 15
Dimitris Psounis
 
ΠΛΗ30
ΠΛΗ30ΠΛΗ30
ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 28
ΠΛΗ30 ΤΕΣΤ 28ΠΛΗ30 ΤΕΣΤ 28
ΠΛΗ30 ΤΕΣΤ 28
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3
Dimitris Psounis
 

Viewers also liked (20)

ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 6
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 7
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 8
 
ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5ΠΛΗ30 ΤΕΣΤ 5
ΠΛΗ30 ΤΕΣΤ 5
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
 
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2
 
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
 
ΠΛΗ30 ΤΕΣΤ 15
ΠΛΗ30 ΤΕΣΤ 15ΠΛΗ30 ΤΕΣΤ 15
ΠΛΗ30 ΤΕΣΤ 15
 
ΠΛΗ30 ΤΕΣΤ 16
ΠΛΗ30 ΤΕΣΤ 16ΠΛΗ30 ΤΕΣΤ 16
ΠΛΗ30 ΤΕΣΤ 16
 
ΠΛΗ30
ΠΛΗ30ΠΛΗ30
ΠΛΗ30
 
ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18
 
ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4ΠΛΗ30 ΤΕΣΤ 4
ΠΛΗ30 ΤΕΣΤ 4
 
ΠΛΗ30 ΤΕΣΤ 28
ΠΛΗ30 ΤΕΣΤ 28ΠΛΗ30 ΤΕΣΤ 28
ΠΛΗ30 ΤΕΣΤ 28
 
ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3
 

Similar to ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8

ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 23
ΠΛΗ30 ΤΕΣΤ 23ΠΛΗ30 ΤΕΣΤ 23
ΠΛΗ30 ΤΕΣΤ 23
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 24
ΠΛΗ30 ΤΕΣΤ 24ΠΛΗ30 ΤΕΣΤ 24
ΠΛΗ30 ΤΕΣΤ 24
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 26
ΠΛΗ30 ΤΕΣΤ 26ΠΛΗ30 ΤΕΣΤ 26
ΠΛΗ30 ΤΕΣΤ 26
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
Dimitris Psounis
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1
Dimitris Psounis
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
Dimitris Psounis
 
ΠΛΗ30 ΤΕΣΤ 8
ΠΛΗ30 ΤΕΣΤ 8ΠΛΗ30 ΤΕΣΤ 8
ΠΛΗ30 ΤΕΣΤ 8
Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
Dimitris Psounis
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2
Dimitris Psounis
 

Similar to ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8 (17)

ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21
 
ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20
 
ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20
 
ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25
 
ΠΛΗ30 ΤΕΣΤ 23
ΠΛΗ30 ΤΕΣΤ 23ΠΛΗ30 ΤΕΣΤ 23
ΠΛΗ30 ΤΕΣΤ 23
 
ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22
 
ΠΛΗ30 ΤΕΣΤ 24
ΠΛΗ30 ΤΕΣΤ 24ΠΛΗ30 ΤΕΣΤ 24
ΠΛΗ30 ΤΕΣΤ 24
 
ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18
 
ΠΛΗ30 ΤΕΣΤ 26
ΠΛΗ30 ΤΕΣΤ 26ΠΛΗ30 ΤΕΣΤ 26
ΠΛΗ30 ΤΕΣΤ 26
 
ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 1
 
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
 
ΠΛΗ30 ΤΕΣΤ 8
ΠΛΗ30 ΤΕΣΤ 8ΠΛΗ30 ΤΕΣΤ 8
ΠΛΗ30 ΤΕΣΤ 8
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
 
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 2
 
ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33
 

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Dimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis
 

More from Dimitris Psounis (20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 ΤΕΣΤ 32
ΠΛΗ31 ΤΕΣΤ 32ΠΛΗ31 ΤΕΣΤ 32
ΠΛΗ31 ΤΕΣΤ 32
 
ΠΛΗ31 ΤΕΣΤ 31
ΠΛΗ31 ΤΕΣΤ 31ΠΛΗ31 ΤΕΣΤ 31
ΠΛΗ31 ΤΕΣΤ 31
 

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8

  • 1. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 1 ΠΛΗ30 - ∆ΙΑΓΩΝΙΣΜΑ 8 ΘΕΜΑ 1: (Μονάδες 20/20) (Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους καθώς το n τείνει στο άπειρο: 1)log( 4 )(loglog 3 2 2 1 1 2)( 2log)( 2)( )( −+ − − = += = = nn nn n nf nnf nf nnf n
  • 2. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 2 (Β) Για την επίλυση ενός προβλήµατος έχουµε στη διάθεσή µας τέσσερις αλγόριθµους: Ο αλγόριθµος Α για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δύο υποπροβλήµατα µεγέθους n/7 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n2 Ο αλγόριθµος Β για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά εκατό υποπροβλήµατα µεγέθους n/10 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n1/2 . Ο αλγόριθµος Γ για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει ένα υποπρόβληµα µεγέθους n-1 και βρίσκει την λύση του αρχικού προβλήµατος σε χρόνο logn. Να βρεθούν οι ασυµπτωτικοί χρόνοι επίλυσης του προβλήµατος για κάθε αλγόριθµο και να επιλέξετε τον ταχύτερο αλγόριθµο. Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις: log log ( ) ( ), ( )b ba a (1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−− = Θ= Θ= Θ= Θ log log ( ) ( ), ( log )b ba a (2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ log ( ) ( ), , ( ( )). b a 0 0 (3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια n ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n b εεεε++++ = Ω= Ω= Ω= Ω      ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ         
  • 3. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 3 ΘΕΜΑ 2: (Μονάδες 20/20) (1) Εξετάστε αν: )5(ω2. )(log.Α log nn n nOnn =Β = (2) Μας δίνουν µια σειρά από αντικείµενα 1, 2, 3, … , n, µε αντίστοιχες αξίες a[1], a[2], a[3], …, a[n], αντίστοιχα, οι οποίες είναι όλες θετικές. Πρέπει να επιλέξουµε υποσύνολο αντικειµένων µε το µέγιστο δυνατό άθροισµα αξιών. Η λύση όµως πρέπει να ικανοποιεί τον εξής περιορισµό: αν επιλεγεί το αντικείµενο i τότε µένει εκτός το αµέσως προηγούµενό του αντικείµενο, i-1. (Α) Περιγράψτε αναδροµικό αλγόριθµο που επιστρέφει το µέγιστο άθροισµα αξιών. (Β) Γράψτε την αναδροµική εξίσωση χρονικής πολυπλοκότητας του αλγορίθµου. (Γ) Περιγράψτε αλγόριθµο ∆υναµικού Προγραµµατισµού που επιστρέφει το µέγιστο άθροισµα αξιών (σχεδιασµό της αναδροµικής εξίσωσης και χρήση της για αποµνηµόνευση επιµέρους λύσεων σε πίνακα).
  • 4. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 4 ΘΕΜΑ 3: (Μονάδες 20/20) (A) Βρείτε µια κανονική έκφραση για τη γλώσσα που αναγνωρίζει το αυτόµατο του παρακάτω σχήµατος. (B) Μετατρέψτε το παραπάνω µη ντετερµινιστικό (µη αιτιοκρατικό) αυτόµατο µε ε κινήσεις σε µη ντετερµινιστικό αυτόµατο χωρίς ε κινήσεις. (Γ) Μετατρέψτε το µη ντετερµινιστικό αυτόµατο του ερωτήµατος Β σε ντετερµινιστικό. (∆) Ελαχιστοποιήστε τις καταστάσεις του αυτοµάτου του ερωτήµατος Γ και δείξτε ότι δεν υπάρχει άλλο ντετερµινιστικό πεπερασµένο αυτόµατο µε λιγότερες καταστάσεις που να δέχεται την ίδια γλώσσα, βρίσκοντας ένα κατάλληλο πλήθος συµβολοσειρών ανά δύο διακρινόµενων.
  • 5. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 5 2. Ποια από τις παρακάτω γλώσσες είναι κανονική και ποια όχι; Για να αποδείξετε ότι κάποια από τις γλώσσες δεν είναι κανονική χρησιµοποιέιστε το λήµµα της άντλησης. Για να αποδείξετε ότι είναι κανονική δώστε την αντίστοιχη κανονική έκφραση. A = { | w ∈ 0,1 ∗ , | | 1 } Β = { 0 1 | 1 2 Γ = { 0 1 | 2 ∆ = { 1 0 1 | 2 } Το Λήµµα Άντλησης για Κανονικές Γλώσσες: Έστω µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε ∈ µε | | να µπορεί να γραφεί στην µορφή όπου για τις συµβολοσειρές , και ισχύει: | | ∈ για κάθε φυσικό !
  • 6. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 6 ΘΕΜΑ 4: (Μονάδες 20/20) Ποια από τις παρακάτω γλώσσες είναι χωρίς συµφραζόµενα και ποια δεν είναι; L1 = { | w ∈ 0,1 ∗ } L2 = { | w ∈ 0,1 ∗ } (A) Για την γλώσσα που είναι χωρίς συµφραζόµενα: (1) ∆ώστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της. (2) ∆ώστε ντετερµινιστικό αυτόµατο στοίβας που αναγνωρίζει τις συµβολοσειρές της: a. Περιγράψτε άτυπα τη λειτουργία του Μ. b. ∆ώστε την πλήρη περιγραφή του Μ (σύνολο καταστάσεων, αλφάβητα εισόδου και στοίβας, αρχική κατάσταση, αρχικό σύµβολο στοίβας, συνάρτηση µετάβασης και σύνολο τελικών καταστάσεων). Για την περιγραφή της συνάρτησης µετάβασης µπορείτε να χρησιµοποιήσετε πίνακα.
  • 7. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 7 (Β) Για την γλώσσα που δεν είναι χωρίς συµφραζόµενα,δώστε τυπική απόδειξη µε το 2ο λήµµα άντλησης: Το Λήµµα Άντλησης για Γλώσσες Ανεξάρτητες Συµφραζοµένων Έστω " µια άπειρη γλώσσα ανεξάρτητη συµφραζοµένων. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε s ∈ " µε |s| να µπορεί να γραφεί στην µορφή $ %& '( όπου για τις συµβολοσειρές %, &, , ' και ( ισχύει: |& '| |&'| ) 0 %& ' ( ∈ " για κάθε φυσικό 0
  • 8. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 8 ΘΕΜΑ 5: (Μονάδες 20/20) Α: Έστω αλφάβητο Σ={0,1} και η γλώσσα: " 0 1 | 0 . Να κατασκευάσετε µηχανή Turing T µε αλφάβητο Σ0={0,1,#,$,Υ,Ν} που θα αποφασίζει την γλώσσα L. H µηχανή θα ξεκινά µε σχηµατισµό #w# για κάποιο ∈ *∗ . (1) ∆ώστε άτυπη περιγραφή της παραπάνω µηχανής Turing (2) ∆ώστε το γράφηµα ροής (3) ∆ώστε το διάγραµµα καταστάσεων Β: ∆ίνεται η γλώσσα L={M,q | η µηχανή Turing Μ µεταβαίνει στην q µε κάθε είσοδο}. ∆είξτε ότι η L δεν είναι επιλύσιµη δεδοµένου ότι η γλώσσα L’={M,w | H M µε είσοδο w τερµατίζει} δεν είναι επιλύσιµη.
  • 9. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 9 ΘΕΜΑ 6: (Μονάδες 20/20) Αποδείξτε ότι το πρόβληµα D3SAT είναι ΝΡ-πλήρες. Για την απόδειξη χρησιµοποιήστε αποκλειστικά το γνωστό ΝΡ-πλήρες πρόβληµα 3SAT. Ακολουθούν οι ορισµοί των προβληµάτων. 3SAT: ∆ίνεται λογική έκφραση Φ σε Συζευκτική Κανονική Μορφή, που ορίζεται σε n µεταβλητές και αποτελείται από m προτάσεις, µε κάθε πρόταση της να περιέχει ακριβώς τρεις µεταβλητές. Υπάρχει ανάθεση λογικών τιµών που ικανοποιεί την Φ; D3SAT: ∆ίνεται λογική έκφραση Φ σε Συζευκτική Κανονική Μορφή, που ορίζεται σε n µεταβλητές και αποτελείται από m προτάσεις, µε κάθε πρόταση της να περιέχει ακριβώς τρεις µεταβλητές. Υπάρχουν τουλάχιστον δύο αναθέσεις λογικών τιµών που ικανοποιούν την Φ;