Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5

790 views

Published on

1.1) Ιεραρχία Συναρτήσεων
1.2) Αναδρομικές Σχέσεις (Θεώρημα Κυριαρχίας, Μέθοδος Επανάληψης)
2.1) Όρια και Ασυμπτωτικοί Συμβολισμοί
2.2) Επίλυση με Δένδρο Αναδρομής
3.1) (011*+0*)*: ΚΕ σε ΜΠΑε σε ΜΠΑ σε ΝΠΑ σε Κανονική Γραμματική
3.2) Διάκριση Κανονικών και μη Κανονικών Γλωσσών
4.1) Ισότητα 2 πραγμάτων: Γραμματική Χωρίς Συμφραζόμενα και Αυτόματο Στοίβας
4.2) Τομή 2 ΓΧΣ (όχι ΓΧΣ με 2ο λήμμα άντλησης)
5.1) Αναλογία 3 πραγμάτων (Μηχανή Turing)
5.2) Απόδειξη μη επιλυσιμότητας
6) Σωστά/Λάθος για NP-πληρότητα

Published in: Education
  • Be the first to comment

  • Be the first to like this

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5

  1. 1. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 1 ΠΛΗ30 - ∆ΙΑΓΩΝΙΣΜΑ 5 ΘΕΜΑ 1: (Μονάδες 20/20) (Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους: ( ) nnnn nn nn nnnf nnnnf nnnnnf nnnf 3log 4 log2log 3 22 2 1 log)( log)( loglog)( loglogloglog)( 2 += += += += Ο συµβολισµός log παριστάνει λογάριθµο µε βάση το 2. . Η συνάρτηση f έχει την ίδια τάξη µεγέθους (ίδιο ρυθµό αύξησης) µε την g (f ≡ g), αν f = Θ(g) (ισοδύναµα Θ(f) = Θ(g)). Η συνάρτηση f έχει µικρότερη τάξη µεγέθους (µικρότερο ρυθµό αύξησης) από την g (f < g), αν f = o(g).
  2. 2. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 2 (Β) Για την επίλυση ενός προβλήµατος έχουµε στη διάθεσή µας τέσσερις αλγόριθµους: Ο αλγόριθµος Α για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά ένα υποπρόβληµα µεγέθους 3n/11 και ένα υποπρόβληµα µεγέθους 5n/7 και συνδυάζει τις λύσεις τους σε χρόνο n. Ο αλγόριθµος Β για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δέκα υποπροβλήµατα µεγέθους n/3 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n3 . Ο αλγόριθµος Γ για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά πενήνταένα υποπρόβληµα µεγέθους n/4 το καθένα και εξάγει την τελική λύση σε χρόνο 5 4 n Ο αλγόριθµος ∆ για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά ένα υποπρόβληµα µεγέθους n-2 και εξάγει την τελική λύση σε χρόνo 3n Να βρεθούν οι ασυµπτωτικοί χρόνοι επίλυσης του προβλήµατος για κάθε αλγόριθµο και να επιλέξετε τον ταχύτερο αλγόριθµο. Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις: log log ( ) ( ), ( )b ba a (1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−− = Θ= Θ= Θ= Θ log log ( ) ( ), ( log )b ba a (2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ log ( ) ( ), , ( ( )). b a 0 0 (3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια n ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n b εεεε++++ = Ω= Ω= Ω= Ω      ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ         
  3. 3. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 3 ΘΕΜΑ 2: (Μονάδες 20/20) (1) Εξετάστε αν: )(log. )(logOlog3. )(logln.Α log nn nn nn nn Θ=Γ =Β = ω (2) ∆ίνεται το πρόβληµα Π και ένας αλγόριθµος Α που το λύνει, ο οποίος λύνει ένα πρόβληµα µεγέθους n, επιλύοντας ένα πρόβληµα µεγέθους 2n/3 και ένα πρόβληµα µεγέθους 5n/6 και συνδυάζει τις λύσεις σε χρόνο n3 . Να υπολογίσετε τον ασυµπτωτικό χρόνο εκτέλεσης του προβλήµατος.
  4. 4. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 4 ΘΕΜΑ 3: (Μονάδες 20/20) ∆ίδεται η κανονική έκφραση:: 011∗ 0∗ ∗ (Α) ∆ώστε Μη Ντετερµινιστικό ΠΑ που αναγνωρίζει τις συµβολοσειρές της γλώσσας. (Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό ΠΑ (Γ) ∆ώστε Κανονική Γραµµατική για το ντετερµινιστικό ΠΑ του ερωτήµατος Β
  5. 5. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 5 2. Ποια από τις παρακάτω γλώσσες είναι κανονική και ποια όχι; Για να αποδείξετε ότι κάποια από τις γλώσσες δεν είναι κανονική χρησιµοποιέιστε το λήµµα της άντλησης. Για να αποδείξετε ότι είναι κανονική δώστε την αντίστοιχη κανονική έκφραση. A = {0n+3 14 | n<4} Β = ∈ 0,1 ∗| ό 0 Γ = ∈ 0,1 ∗| ό 0 ό ∆ = {0n+1 100m | n∈ , m∈ } Το Λήµµα Άντλησης για Κανονικές Γλώσσες: Έστω µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός ! (µήκος άντλησης) τέτοιος ώστε κάθε " ∈ µε |#| $ ! να µπορεί να γραφεί στην µορφή " % &'( όπου για τις συµβολοσειρές &, ' και ( ισχύει: |&'| ) ! ' * + &', ( ∈ για κάθε φυσικό , $ -
  6. 6. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 6 ΘΕΜΑ 4: (Μονάδες 20/20) Ποια από τις παρακάτω γλώσσες είναι χωρίς συµφραζόµενα και ποια δεν είναι; L1 = { ∈ 0,1 ∗ | έχει ίσα 0 και 1 και είναι παλινδροµική}. L2 = {can bn c| n≥0} (A) Για την γλώσσα που είναι χωρίς συµφραζόµενα: (1) ∆ώστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της. (2) ∆ώστε ντετερµινιστικό αυτόµατο στοίβας που αναγνωρίζει τις συµβολοσειρές της: a. Περιγράψτε άτυπα τη λειτουργία του Μ. b. ∆ώστε την πλήρη περιγραφή του Μ (σύνολο καταστάσεων, αλφάβητα εισόδου και στοίβας, αρχική κατάσταση, αρχικό σύµβολο στοίβας, συνάρτηση µετάβασης και σύνολο τελικών καταστάσεων). Για την περιγραφή της συνάρτησης µετάβασης µπορείτε να χρησιµοποιήσετε πίνακα.
  7. 7. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 7 (Β) Για την γλώσσα που δεν είναι χωρίς συµφραζόµενα,δώστε τυπική απόδειξη µε το 2ο λήµµα άντλησης: Το Λήµµα Άντλησης για Γλώσσες Ανεξάρτητες Συµφραζοµένων Έστω . µια άπειρη γλώσσα ανεξάρτητη συµφραζοµένων. Τότε υπάρχει ένας αριθµός / (µήκος άντλησης) τέτοιος ώστε κάθε s ∈ . µε |s| $ / να µπορεί να γραφεί στην µορφή 1 % 23 45 όπου για τις συµβολοσειρές 2, 3, , 4 και 5 ισχύει: |3 4| ) / |34| 6 0 237 47 5 ∈ . για κάθε φυσικό 8 $ 0
  8. 8. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 8 ΘΕΜΑ 5: (Μονάδες 20/20) Α: Έστω αλφάβητο Σ={0,1} και η γλώσσα: . % 9 :;9<= >9<=| / $ 0 . Να κατασκευάσετε µηχανή Turing T µε αλφάβητο Σ0={0,1,#,$,Υ,Ν} που θα αποφασίζει την γλώσσα L. H µηχανή θα ξεκινά µε σχηµατισµό #w# για κάποιο ∈ ?∗ . ∆ώστε άτυπη περιγραφή της παραπάνω µηχανής Turing (τον αλγόριθµο διαχείρισης της ταινίας της) και σην συνέχεια τυπική περιγραφή µέσω γραφήµατος ΤΜ. Β: ∆ίνεται η γλώσσα L={M | υπάρχει συµβολοσειρά µε την οποία η Μ τερµατίζει}. ∆είξτε ότι η L δεν είναι επιλύσιµη δεδοµένου ότι η γλώσσα L’={M | H M τερµατίζει µε είσοδο aab} δεν είναι επιλύσιµη.
  9. 9. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 5 9 ΘΕΜΑ 6: (Μονάδες 20/20) Ποιες από τις παρακάτω προτάσεις είναι (Α) Σωστές, (β) Λάθος, (Γ) Αληθές αν P=NP (∆) Αληθές αν P≠NP ∆ίδεται ότι το πρόβληµα Π είναι NP-Complete: 1. To Π δεν επιλύεται σε πολυωνυµικό χρόνο 2. Το Π επιλύεται σε πολυωνυµικό χρόνο. 3. Το Π επιλύεται σε εκθετικό χρόνο. 4. Το Π λύνεται σε µη ντετερµινιστικό πολυωνυµικό χρόνο. 5. Το Π ανάγεται στο 3SAT και αντίστροφα 6. Υπάρχει αναγωγή από το Π στο πρόβληµα PATH 7. Υπάρχει αναγωγή από το PATH στο πρόβληµα Π

×