Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 1
ΠΛΗ30 - ΕΠΑΝΑΛΗΠΤΙΚΟ ∆ΙΑΓΩΝΙΣΜΑ 4
Ονοµατεπώνυµο:………………………………………………………...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 2
ΘΕΜΑ 1: (Μονάδες 10+10)
(Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις ...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 3
(Β) Να υπολογίσετε την λύση των αναδροµικών σχέσεων:
32
5
4
2/33
23
2...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 4
ΘΕΜΑ 2: (Μονάδες 15+5)
Μας δίνουν µια σειρά από αντικείµενα 1, 2, 3, ...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 5
ΘΕΜΑ 3: (Μονάδες 10+10)
1. ∆ίδεται η κανονική έκφραση: 1*(01+10)*
(A)...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 6
2. Για κάθε µία από τις παρακάτω γλώσσες προσδιορίστε αν είναι κανονι...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 7
ΘΕΜΑ 4: (Μονάδες 4+4+12)
(Α) ∆ώστε µια γραµµατική χωρίς συµφραζόµενα ...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 8
ΘΕΜΑ 5: (Μονάδες 10+10)
Α: Έστω αλφάβητο Σ={a,b,c} και η γλώσσα: I ",...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 9
Β: ∆ίνεται η γλώσσα L={M,q | η µηχανή Turing Μ δεν διέρχεται ποτέ από...
∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 10
ΘΕΜΑ 6: (Μονάδες 5+15)
Α. Στο πρόβληµα της ∆ΙΠΛΗΣ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ...
Upcoming SlideShare
Loading in …5
×

of

ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 1 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 2 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 3 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 4 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 5 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 6 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 7 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 8 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 9 ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4 Slide 10
Upcoming SlideShare
ΠΛΗ30 ΤΕΣΤ 27
Next
Download to read offline and view in fullscreen.

0 Likes

Share

Download to read offline

ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4

Download to read offline

.

Related Audiobooks

Free with a 30 day trial from Scribd

See all
  • Be the first to like this

ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 4

  1. 1. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 1 ΠΛΗ30 - ΕΠΑΝΑΛΗΠΤΙΚΟ ∆ΙΑΓΩΝΙΣΜΑ 4 Ονοµατεπώνυµο:………………………………………………………………… Ηµεροµηνία: ……………………………………………………………………… ∆ιάρκεια: 180΄ Ερώτηµα Μονάδες Βαθµολογία 1 10 10 2 15 5 3 10 3+3+4 4 4+4 12 5 10 10 6 3+3 7+7 Σύνολο 120
  2. 2. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 2 ΘΕΜΑ 1: (Μονάδες 10+10) (Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους καθώς το n τείνει στο άπειρο: n 3 4 n 2 !
  3. 3. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 3 (Β) Να υπολογίσετε την λύση των αναδροµικών σχέσεων: 32 5 4 2/33 23 2 )()4( 3 3)()3( 100 1000)()2(log 3 27)()1( n n T n TnTn n TnT n n TnTnn n TnT +      +      =+      ⋅= +      =+      = Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη µεγέθους. Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις: log log ( ) ( ), ( )b ba a (1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−− = Θ= Θ= Θ= Θ log log ( ) ( ), ( log )b ba a (2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ log ( ) ( ), , ( ( )). b a 0 0 (3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια n ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n b εεεε++++ = Ω= Ω= Ω= Ω      ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ         
  4. 4. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 4 ΘΕΜΑ 2: (Μονάδες 15+5) Μας δίνουν µια σειρά από αντικείµενα 1, 2, 3, … , n, µε αντίστοιχες αξίες: a[1], a[2], a[3], …, a[n]. ∆ιαθέτουµε συνολικό κεφάλαιο Κ χρηµάτων. Πρέπει να επιλέξουµε υποσύνολο αντικειµένων από το {1, 2, …, n} ξοδεύοντας συνολικά το µεγαλύτερο δυνατό ποσό από το διαθέσιµο κεφάλαιο µας Κ, χωρίς όµως να το υπερβούµε. (Α) Αν όλα τα αντικείµενα έχουν ίδια αξία, υπάρχει βέλτιστος άπληστος αλγόριθµος; (Β) Αν τα αντικείµενα έχουν αξίες που διαφέρουν, σχεδιάστε αλγόριθµο ∆υναµικού Προγραµµατισµού.
  5. 5. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 5 ΘΕΜΑ 3: (Μονάδες 10+10) 1. ∆ίδεται η κανονική έκφραση: 1*(01+10)* (A) ∆ώστε Μη Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΜΠΑ) της L (Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΝΠΑ) της L
  6. 6. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 6 2. Για κάθε µία από τις παρακάτω γλώσσες προσδιορίστε αν είναι κανονικές ή όχι.Για µία µη κανονική γλώσσα χρησιµοποιήστε το λήµµα της άντλησης για να αποδείξετε ότι δεν είναι κανονική. Για µία κανονική γλώσσα δώστε την αντίστοιχη κανονική έκφραση. A = {0n 14 | n<5} Β = {0m 1n | m>2, n<2} Γ = "# ∈ "0,1(∗|+ ,-./0ό1 234 0 5.4,. 056,7ύ25-+1 ,8ό 2+ 2-.87,9.+ 2+: ,-./0+: 234 ,9934( ∆ = {0n 10m | n∈ ;, m∈ ; } Το Λήµµα Άντλησης για Κανονικές Γλώσσες: Έστω < µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός = (µήκος άντλησης) τέτοιος ώστε κάθε > ∈ < µε |?| @ = να µπορεί να γραφεί στην µορφή > ABC όπου για τις συµβολοσειρές A, B και C ισχύει: |AB| D = B E F ABG C ∈ < για κάθε φυσικό G @ H
  7. 7. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 7 ΘΕΜΑ 4: (Μονάδες 4+4+12) (Α) ∆ώστε µια γραµµατική χωρίς συµφραζόµενα που παράγει τη γλώσσα: L1 = {bbam bm+1 | m≥2}. (B) ∆ώστε µια γραµµατική χωρίς συµφραζόµενα που παράγει τη γλώσσα: L={am bn cp dq : m + n = p + q} (Γ) ∆ώστε ένα ντετερµινιστικό αυτόµατο στοίβας Μ που να αναγνωρίζει τη γλώσσα: L3 = {a2n cn bm am | n,m ∈ }. (1) Περιγράψτε άτυπα τη λειτουργία του Μ. (2) ∆ώστε την πλήρη περιγραφή του Μ (σύνολο καταστάσεων, αλφάβητα εισόδου και στοίβας, αρχική κατάσταση, αρχικό σύµβολο στοίβας, συνάρτηση µετάβασης και σύνολο τελικών καταστάσεων). Για την περιγραφή της συνάρτησης µετάβασης µπορείτε να χρησιµοποιήσετε πίνακα. Σηµείωση: είναι το σύνολο των φυσικών αριθµών
  8. 8. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 8 ΘΕΜΑ 5: (Μονάδες 10+10) Α: Έστω αλφάβητο Σ={a,b,c} και η γλώσσα: I ", J K | @ 1(. Να κατασκευάσετε µηχανή Turing T µε αλφάβητο Σ0={α,b,c,#,$,Υ,Ν} που θα αποφασίζει την γλώσσα L. H µηχανή θα ξεκινά µε σχηµατισµό #w# για κάποιο # ∈ L∗ . (1) ∆ώστε άτυπη περιγραφή της παραπάνω µηχανής Turing (τον αλγόριθµο διαχείρισης της ταινίας της) και σην συνέχεια τυπική περιγραφή µέσω γραφήµατος ΤΜ. (2) ∆ώστε τα βήµατα της εκτέλεσης µε είσοδο #aaabbbc#
  9. 9. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 9 Β: ∆ίνεται η γλώσσα L={M,q | η µηχανή Turing Μ δεν διέρχεται ποτέ από την κατάσταση q}. ∆είξτε ότι η L δεν είναι επιλύσιµη δεδοµένου ότι η γλώσσα L’={M,w | H M µε είσοδο w τερµατίζει} δεν είναι επιλύσιµη.
  10. 10. ∆ηµήτρης Ψούνης – ΠΛΗ30, Επαναληπτικό ∆ιαγώνισµα 4 10 ΘΕΜΑ 6: (Μονάδες 5+15) Α. Στο πρόβληµα της ∆ΙΠΛΗΣ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ δίνεται µια φόρµουλα φ σε κανονική συζευκτική µορφή και ερωτάται αν υπάρχουν τουλάχιστον 2 αποτιµήσεις που την ικανοποιούν. Εξετάστε αν η ∆ΙΠΛΗ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑ ανήκει στην NP. B. ∆ώστε πολυωνυµική αναγωγή του προβλήµατος της ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ στο πρόβληµα της ∆ΙΠΛΗΣ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ.

.

Views

Total views

894

On Slideshare

0

From embeds

0

Number of embeds

357

Actions

Downloads

124

Shares

0

Comments

0

Likes

0

×