ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2

Dimitris Psounis
Dimitris PsounisTeacher & Manager at Δημήτρης Ψούνης - Υπηρεσίες Εκπαίδευσης

1.1) Ιεραρχία Συναρτήσεων 1.2) Αναδρομικές Σχέσεις (Θεώρημα Κυριαρχίας, Μέθοδος Επανάληψης) 2) Δυναμικός Προγραμματισμός (Ψευδοκώδικας για αναδρομική σχέση δυναμικού προγραμματισμού) 3.1) 1*10*1*: ΚΕ σε ΜΠΑε σε ΜΠΑ σε ΝΠΑ σε Κανονική Γραμματική 3.2) Διάκριση Κανονικών και μη Κανονικών Γλωσσών 4.1) Ανισότητα 2 πραγμάτων: Γραμματική Χωρίς Συμφραζόμενα και Αυτόματο Στοίβας 4.2) Ανισότητα 3 πραγμάτων (όχι ΓΧΣ με 2ο λήμμα άντλησης) 5.1) Ισότητα 2 πραγμάτων (Μηχανή Turing) 5.2) Αναγωγή μη επιλυσιμότητας 6) Το At Least 7 SAT είναι NP-complete

∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 1
ΠΛΗ30 - ∆ΙΑΓΩΝΙΣΜΑ 2
ΘΕΜΑ 1: (Μονάδες 20/20)
(Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους:
310 3
4
logloglog
3
3
2
22
1
)(
)(log)(
2)(
2log)(
2
nnnf
nnnf
nnf
nnf
nn
n
n
+=
+=
+=
+=
Ο συµβολισµός log παριστάνει λογάριθµο µε βάση το 2. . Η συνάρτηση f έχει την ίδια τάξη µεγέθους (ίδιο ρυθµό αύξησης) µε την g (f
≡ g), αν f = Θ(g) (ισοδύναµα Θ(f) = Θ(g)). Η συνάρτηση f έχει µικρότερη τάξη µεγέθους (µικρότερο ρυθµό αύξησης) από την g (f <
g), αν f = o(g).
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 2
(Β) Για την επίλυση ενός προβλήµατο έχουµε στη διάθεσή µας τρεις αλγόριθµους:
Ο αλγόριθµος Α για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δύο υποπροβλήµατα µεγέθους
2n/3 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n.
Ο αλγόριθµος Β για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δέκα υποπροβλήµατα µεγέθους
4n/10 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n2
.
Ο αλγόριθµος Γ για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά ένα υποπρόβληµα µεγέθους n-1
το καθένα και εξάγει την τελική λύση µε 5 πράξεις.
Να βρεθούν οι ασυµπτωτικοί χρόνοι επίλυσης του προβλήµατος για κάθε αλγόριθµο και να επιλέξετε τον
ταχύτερο αλγόριθµο για την επίλυση του προβλήµατος.
Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και
f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις:
log log
( ) ( ), ( )b ba a
(1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−−
= Θ= Θ= Θ= Θ
log log
( ) ( ), ( log )b ba a
(2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ
log
( ) ( ), ,
( ( )).
b a
0
0
(3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια
n
ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n
b
εεεε++++
= Ω= Ω= Ω= Ω
    
≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ    
    
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 3
ΘΕΜΑ 2: (Μονάδες 20/20)
∆ίδεται η ακολουθία 2 3 µε 0 και 1
1. Υπολογίστε τα , ,
2. Προτείνετε έναν αλγόριθµο δυναµικού προγραµµατισµού που υπολογίζει τον n-οστό όρο της ακολουθίας
3. Υπολογίστε την πολυπλοκότητα του αλγόριθµου που προτείνατε στο (2)
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 4
ΘΕΜΑ 3: (Μονάδες 20/20)
1. ∆ίδεται η κανονική έκφραση: 1*10*1*
(Α) ∆ώστε ένα Μη Ντετερµινιστικό ΠΑ που αναγνωρίζει τις συµβολοσειρές που παράγονται από την παραπάνω
κανονική έκφραση.
(Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό Πεπερασµένο Αυτόµατο του ερωτήµατος Α
(Γ) ∆ώστε Κανονική Γραµµατική για το ντετερµινιστικό ΠΑ του ερωτήµατος Β
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 5
2. Ποια από τις παρακάτω γλώσσες είναι κανονική και ποια όχι; Για να αποδείξετε ότι κάποια
από τις γλώσσες δεν είναι κανονική χρησιµοποιέιστε το λήµµα της άντλησης. Για να αποδείξετε
ότι είναι κανονική δώστε την αντίστοιχη κανονική έκφραση.
A = {an
bm
ak
| n ≥ 0, m ≥ 0, k ≥ 0}
B = {an
bm
ak
| n<2, m ≥ 0, k=0}
Γ = {an
bm
ak
| n ≥m, k ≥ 2}
∆ = {an
bm
ak
| n ≥ 2, m ≥ 2, k ≥ 2}
E = {an
bm
ak
| n<m<k}
Το Λήµµα Άντλησης για Κανονικές Γλώσσες:
Έστω µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε ∈ µε | | να
µπορεί να γραφεί στην µορφή όπου για τις συµβολοσειρές , και ισχύει:
| |
∈ για κάθε φυσικό
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 6
ΘΕΜΑ 4: (Μονάδες 20/20)
Ποια από τις παρακάτω γλώσσες είναι χωρίς συµφραζόµενα και ποια δεν είναι;
L1 = {an
bk
cm
| n+m<k}.
L2 = {an
bk
cm
| n<m<k}.
(A) Για την γλώσσα που είναι χωρίς συµφραζόµενα:
(1) ∆ώστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της.
(2) ∆ώστε ντετερµινιστικό αυτόµατο στοίβας που αναγνωρίζει τις συµβολοσειρές της:
a. Περιγράψτε άτυπα τη λειτουργία του Μ.
b. ∆ώστε την πλήρη περιγραφή του Μ (σύνολο καταστάσεων, αλφάβητα εισόδου και στοίβας,
αρχική κατάσταση, αρχικό σύµβολο στοίβας, συνάρτηση µετάβασης και σύνολο τελικών
καταστάσεων). Για την περιγραφή της συνάρτησης µετάβασης µπορείτε να χρησιµοποιήσετε
πίνακα.
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 7
(Β) Για την γλώσσα που δεν είναι χωρίς συµφραζόµενα,δώστε τυπική απόδειξη µε το 2ο
λήµµα άντλησης:
Το Λήµµα Άντλησης για Γλώσσες Ανεξάρτητες Συµφραζοµένων
Έστω µια άπειρη γλώσσα ανεξάρτητη συµφραζοµένων. Τότε υπάρχει ένας αριθµός (µήκος άντλησης)
τέτοιος ώστε κάθε s ∈ µε |s| να µπορεί να γραφεί στην µορφή " #$%&' όπου για τις συµβολοσειρές
#, $, %, & και ' ισχύει:
|$%&|
|$&| ( 0
#$)
%&)
' ∈ για κάθε φυσικό * 0
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 8
ΘΕΜΑ 5: (Μονάδες 20/20)
Α: Κατασκευάστε Μ.Τ. που αποφασίζει την γλώσσα L={(01)n
(20)n
| n≥0} του αλφαβήτου {0,1,2} µε αλφάβητο
ταινίας το {#,$,0,1,2}
Β: ∆εδοµένου ότι η γλώσσα L={M,w | H M τερµατίζει µε είσοδο w} δεν είναι επιλύσιµη δείξτε ότι η γλώσσα
L’={M,w,q1,q2 | H M µε είσοδο w µεταβαίνει από την κατάσταση q1 στην κατάσταση q2} δεν είναι επιλύσιµη.
∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 9
ΘΕΜΑ 6: (Μονάδες 20/20)
Α. Στο πρόβληµα της ΕΠΤΑΠΛΗΣ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ δίνεται µια φόρµουλα φ σε κανονική συζευκτική
µορφή και ερωτάται αν υπάρχουν τουλάχιστον 7 αποτιµήσεις που την ικανοποιούν. Εξετάστε αν η ΕΠΤΑΠΛΗ
ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑ ανήκει στην NP.
B. ∆ώστε πολυωνυµική αναγωγή του προβλήµατος της ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ στο πρόβληµα της
ΕΠΤΑΠΛΗΣ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ.

Recommended

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6Dimitris Psounis
1.1K views9 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4Dimitris Psounis
1.2K views9 slides
ΠΛΗ30 ΤΕΣΤ 19 by
ΠΛΗ30 ΤΕΣΤ 19ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19Dimitris Psounis
521 views6 slides
ΠΛΗ30 ΤΕΣΤ 26 by
ΠΛΗ30 ΤΕΣΤ 26ΠΛΗ30 ΤΕΣΤ 26
ΠΛΗ30 ΤΕΣΤ 26Dimitris Psounis
1K views8 slides
ΠΛΗ30 ΤΕΣΤ 21 by
ΠΛΗ30 ΤΕΣΤ 21ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21Dimitris Psounis
427 views8 slides
ΠΛΗ30 ΤΕΣΤ 22 by
ΠΛΗ30 ΤΕΣΤ 22ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22Dimitris Psounis
444 views7 slides

More Related Content

What's hot

ΠΛΗ30 ΤΕΣΤ 6 by
ΠΛΗ30 ΤΕΣΤ 6ΠΛΗ30 ΤΕΣΤ 6
ΠΛΗ30 ΤΕΣΤ 6Dimitris Psounis
2.1K views2 slides
ΠΛΗ30 ΤΕΣΤ 7 by
ΠΛΗ30 ΤΕΣΤ 7ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7Dimitris Psounis
1.9K views3 slides
ΠΛΗ30 ΚΑΡΤΑ 1.5 by
ΠΛΗ30 ΚΑΡΤΑ 1.5ΠΛΗ30 ΚΑΡΤΑ 1.5
ΠΛΗ30 ΚΑΡΤΑ 1.5Dimitris Psounis
6.6K views3 slides
ΠΛΗ30 ΜΑΘΗΜΑ 1.5 by
ΠΛΗ30 ΜΑΘΗΜΑ 1.5ΠΛΗ30 ΜΑΘΗΜΑ 1.5
ΠΛΗ30 ΜΑΘΗΜΑ 1.5Dimitris Psounis
8.1K views33 slides
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 by
ΠΛΗ30 ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΜΑΘΗΜΑ 1.3Dimitris Psounis
9.2K views22 slides
ΠΛΗ30 Τυπολόγιο Ενότητας 1 by
ΠΛΗ30 Τυπολόγιο Ενότητας 1ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1Dimitris Psounis
15.5K views2 slides

What's hot(20)

ΠΛΗ30 Τυπολόγιο Ενότητας 1 by Dimitris Psounis
ΠΛΗ30 Τυπολόγιο Ενότητας 1ΠΛΗ30 Τυπολόγιο Ενότητας 1
ΠΛΗ30 Τυπολόγιο Ενότητας 1
Dimitris Psounis15.5K views
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ by Dimitris Psounis
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ
ΠΛΗ30 ΜΑΘΗΜΑ 1.6 ΚΑΡΤΑ
Dimitris Psounis7.6K views
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5 by Dimitris Psounis
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
Dimitris Psounis899 views
τυπος 2 επαναληπτικό κριτηριο αξιολογησης με ασκησεις σχολικου βιβλιου by Μάκης Χατζόπουλος
τυπος 2    επαναληπτικό κριτηριο αξιολογησης με ασκησεις σχολικου βιβλιουτυπος 2    επαναληπτικό κριτηριο αξιολογησης με ασκησεις σχολικου βιβλιου
τυπος 2 επαναληπτικό κριτηριο αξιολογησης με ασκησεις σχολικου βιβλιου

Viewers also liked

ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3 by
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 3Dimitris Psounis
2.1K views3 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 1Dimitris Psounis
2.4K views9 slides
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1 by
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 1Dimitris Psounis
4.1K views3 slides
ΠΛΗ30 ΤΕΣΤ 3 by
ΠΛΗ30 ΤΕΣΤ 3ΠΛΗ30 ΤΕΣΤ 3
ΠΛΗ30 ΤΕΣΤ 3Dimitris Psounis
2.3K views1 slide
ΠΛΗ30 ΤΕΣΤ 1 by
ΠΛΗ30 ΤΕΣΤ 1ΠΛΗ30 ΤΕΣΤ 1
ΠΛΗ30 ΤΕΣΤ 1Dimitris Psounis
3.9K views2 slides
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1) by
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.3 (4in1)Dimitris Psounis
6.7K views6 slides

Viewers also liked(15)

ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3 by Dimitris Psounis
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
Dimitris Psounis7.4K views
ΠΛΗ30 ΚΑΡΤΑ - ΙΕΡΑΡΧΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ by Dimitris Psounis
ΠΛΗ30 ΚΑΡΤΑ - ΙΕΡΑΡΧΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣΠΛΗ30 ΚΑΡΤΑ - ΙΕΡΑΡΧΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ
ΠΛΗ30 ΚΑΡΤΑ - ΙΕΡΑΡΧΙΑ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ
Dimitris Psounis9.1K views
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl) by Dimitris Psounis
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4sl)
Dimitris Psounis11.6K views
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ by Dimitris Psounis
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
ΠΛΗ30.ΚΑΡΤΑ - ΑΝΑΛΥΣΗ ΔΙΑΔΙΚΑΣΤΙΚΩΝ ΑΛΓΟΡΙΘΜΩΝ
Dimitris Psounis14.2K views
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1) by Dimitris Psounis
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)
ΠΛΗ30 ΜΑΘΗΜΑ 1.1 (4in1)
Dimitris Psounis12.3K views

Similar to ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3Dimitris Psounis
1.3K views9 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 7Dimitris Psounis
1.3K views9 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 5Dimitris Psounis
1.2K views9 slides
ΠΛΗ30 ΤΕΣΤ 18 by
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18Dimitris Psounis
844 views7 slides
ΠΛΗ30 ΤΕΣΤ 18 by
ΠΛΗ30 ΤΕΣΤ 18ΠΛΗ30 ΤΕΣΤ 18
ΠΛΗ30 ΤΕΣΤ 18Dimitris Psounis
449 views7 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8Dimitris Psounis
1.6K views9 slides

Similar to ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2(20)

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣDimitris Psounis
4.9K views25 slides
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ) by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Dimitris Psounis
641 views7 slides
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ) by
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)Dimitris Psounis
475 views8 slides
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ by
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣDimitris Psounis
1.4K views29 slides
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣDimitris Psounis
5.9K views30 slides
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ) by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Dimitris Psounis
3.8K views8 slides

More from Dimitris Psounis(20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Dimitris Psounis4.9K views
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ) by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Dimitris Psounis641 views
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ) by Dimitris Psounis
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
Dimitris Psounis475 views
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ by Dimitris Psounis
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
Dimitris Psounis1.4K views
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Dimitris Psounis5.9K views
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ) by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Dimitris Psounis3.8K views
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C by Dimitris Psounis
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
Dimitris Psounis2.3K views
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p) by Dimitris Psounis
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
Dimitris Psounis331 views
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6 by Dimitris Psounis
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
Dimitris Psounis2.9K views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.5K views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
Dimitris Psounis2.5K views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis4.6K views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis4.5K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
Dimitris Psounis3.2K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.2K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
Dimitris Psounis3.2K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.1K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
Dimitris Psounis3.9K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.8K views

Recently uploaded

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ. by
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ.ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ.ssuser43d27b
10 views8 slides
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ... by
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...2lykkomo
533 views7 slides
2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdf by
2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdf2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdf
2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdfssuser9e6212
416 views15 slides
Βρίσκοντας τα μνημεία by
Βρίσκοντας τα μνημείαΒρίσκοντας τα μνημεία
Βρίσκοντας τα μνημείαDimitra Mylonaki
13 views8 slides
Zoologiko_Nov_2023.pptx by
Zoologiko_Nov_2023.pptxZoologiko_Nov_2023.pptx
Zoologiko_Nov_2023.pptx36dimperist
85 views5 slides
ΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptx by
ΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptxΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptx
ΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptxssuser86b52c
16 views71 slides

Recently uploaded(20)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ. by ssuser43d27b
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ.ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ.
ssuser43d27b10 views
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ... by 2lykkomo
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...
2lykkomo533 views
2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdf by ssuser9e6212
2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdf2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdf
2023_11_29_Φ_251_136798_Α5_ΕΓΚΥΚΛΙΟΣ_ΑΙΤΗΣΗΣ_ΔΗΛΩΣΗΣ_ΓΕΛ_2024.pdf
ssuser9e6212416 views
Βρίσκοντας τα μνημεία by Dimitra Mylonaki
Βρίσκοντας τα μνημείαΒρίσκοντας τα μνημεία
Βρίσκοντας τα μνημεία
Dimitra Mylonaki13 views
Zoologiko_Nov_2023.pptx by 36dimperist
Zoologiko_Nov_2023.pptxZoologiko_Nov_2023.pptx
Zoologiko_Nov_2023.pptx
36dimperist85 views
ΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptx by ssuser86b52c
ΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptxΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptx
ΧΡΙΣΤΟΥΓΕΝΝΑ ΣΕ ΟΛΟΝ ΤΟΝ ΚΟΣΜΟ.pptx
ssuser86b52c16 views
Σχολές, Σπουδές & Πανελλαδικές 2024 by EmployEdu
Σχολές, Σπουδές & Πανελλαδικές 2024Σχολές, Σπουδές & Πανελλαδικές 2024
Σχολές, Σπουδές & Πανελλαδικές 2024
EmployEdu32 views
Μνημεία Παγκόσμιας Πολιτιστικής Κληρονομιάς ΛΑΠΜΠΟΥΚ by Dimitra Mylonaki
Μνημεία Παγκόσμιας Πολιτιστικής Κληρονομιάς ΛΑΠΜΠΟΥΚΜνημεία Παγκόσμιας Πολιτιστικής Κληρονομιάς ΛΑΠΜΠΟΥΚ
Μνημεία Παγκόσμιας Πολιτιστικής Κληρονομιάς ΛΑΠΜΠΟΥΚ
Dimitra Mylonaki17 views
ATT00004.pdf by 2dimkoryd
ATT00004.pdfATT00004.pdf
ATT00004.pdf
2dimkoryd109 views
ΟΔΗΓΙΕΣ ΚΑΤΑΘΕΣΗΣ ΑΠΟΓΡΑΦΗΣ-3-4 (1).pdf by ssuser369a35
ΟΔΗΓΙΕΣ ΚΑΤΑΘΕΣΗΣ ΑΠΟΓΡΑΦΗΣ-3-4 (1).pdfΟΔΗΓΙΕΣ ΚΑΤΑΘΕΣΗΣ ΑΠΟΓΡΑΦΗΣ-3-4 (1).pdf
ΟΔΗΓΙΕΣ ΚΑΤΑΘΕΣΗΣ ΑΠΟΓΡΑΦΗΣ-3-4 (1).pdf
ssuser369a3517 views
ΠΡΟΓΡΑΜΜΑ_ΤΕΛΙΚΟ_01.12.2023.pdf by 2lykkomo
ΠΡΟΓΡΑΜΜΑ_ΤΕΛΙΚΟ_01.12.2023.pdfΠΡΟΓΡΑΜΜΑ_ΤΕΛΙΚΟ_01.12.2023.pdf
ΠΡΟΓΡΑΜΜΑ_ΤΕΛΙΚΟ_01.12.2023.pdf
2lykkomo944 views
Γυμνάσιο Κεραμωτής - Διδακτική επίσκεψη στο Ρούπελ 31.10.2023 by gymkeram
Γυμνάσιο Κεραμωτής - Διδακτική επίσκεψη στο Ρούπελ 31.10.2023Γυμνάσιο Κεραμωτής - Διδακτική επίσκεψη στο Ρούπελ 31.10.2023
Γυμνάσιο Κεραμωτής - Διδακτική επίσκεψη στο Ρούπελ 31.10.2023
gymkeram14 views
Σύμπραξη Γυμνάσιο Κεραμωτής - 7ο Γυμνάσιο Καβάλας - Realschule Calberlah Γερμ... by gymkeram
Σύμπραξη Γυμνάσιο Κεραμωτής - 7ο Γυμνάσιο Καβάλας - Realschule Calberlah Γερμ...Σύμπραξη Γυμνάσιο Κεραμωτής - 7ο Γυμνάσιο Καβάλας - Realschule Calberlah Γερμ...
Σύμπραξη Γυμνάσιο Κεραμωτής - 7ο Γυμνάσιο Καβάλας - Realschule Calberlah Γερμ...
gymkeram14 views
ΔΙΑΧΕΙΡΙΣΗ ΚΡΙΣΕΩΝ-ΣΥΜΒΟΥΛΟΣ ΣΧΟΛΙΚΗΣ ΖΩΗΣ by ssuser43d27b
ΔΙΑΧΕΙΡΙΣΗ ΚΡΙΣΕΩΝ-ΣΥΜΒΟΥΛΟΣ ΣΧΟΛΙΚΗΣ ΖΩΗΣΔΙΑΧΕΙΡΙΣΗ ΚΡΙΣΕΩΝ-ΣΥΜΒΟΥΛΟΣ ΣΧΟΛΙΚΗΣ ΖΩΗΣ
ΔΙΑΧΕΙΡΙΣΗ ΚΡΙΣΕΩΝ-ΣΥΜΒΟΥΛΟΣ ΣΧΟΛΙΚΗΣ ΖΩΗΣ
ssuser43d27b36 views
Από τον ηλεκτρισμό στον μαγνητισμό by Dimitra Mylonaki
Από τον ηλεκτρισμό στον μαγνητισμόΑπό τον ηλεκτρισμό στον μαγνητισμό
Από τον ηλεκτρισμό στον μαγνητισμό
Dimitra Mylonaki16 views
ΚΑΤΑΝΑΛΩΤΙΣΜΟΣ. by ssuser43d27b
ΚΑΤΑΝΑΛΩΤΙΣΜΟΣ.ΚΑΤΑΝΑΛΩΤΙΣΜΟΣ.
ΚΑΤΑΝΑΛΩΤΙΣΜΟΣ.
ssuser43d27b35 views
Ο ΑΪ ΒΑΣΙΛΗΣ ΣΤΙΣ ΔΙΑΦΟΡΕΣ ΧΩΡΕΣ ΜΕΡΟΣ Β.pptx by ssuser86b52c
Ο ΑΪ ΒΑΣΙΛΗΣ ΣΤΙΣ ΔΙΑΦΟΡΕΣ ΧΩΡΕΣ ΜΕΡΟΣ Β.pptxΟ ΑΪ ΒΑΣΙΛΗΣ ΣΤΙΣ ΔΙΑΦΟΡΕΣ ΧΩΡΕΣ ΜΕΡΟΣ Β.pptx
Ο ΑΪ ΒΑΣΙΛΗΣ ΣΤΙΣ ΔΙΑΦΟΡΕΣ ΧΩΡΕΣ ΜΕΡΟΣ Β.pptx
ssuser86b52c12 views

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 2

  • 1. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 1 ΠΛΗ30 - ∆ΙΑΓΩΝΙΣΜΑ 2 ΘΕΜΑ 1: (Μονάδες 20/20) (Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους: 310 3 4 logloglog 3 3 2 22 1 )( )(log)( 2)( 2log)( 2 nnnf nnnf nnf nnf nn n n += += += += Ο συµβολισµός log παριστάνει λογάριθµο µε βάση το 2. . Η συνάρτηση f έχει την ίδια τάξη µεγέθους (ίδιο ρυθµό αύξησης) µε την g (f ≡ g), αν f = Θ(g) (ισοδύναµα Θ(f) = Θ(g)). Η συνάρτηση f έχει µικρότερη τάξη µεγέθους (µικρότερο ρυθµό αύξησης) από την g (f < g), αν f = o(g).
  • 2. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 2 (Β) Για την επίλυση ενός προβλήµατο έχουµε στη διάθεσή µας τρεις αλγόριθµους: Ο αλγόριθµος Α για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δύο υποπροβλήµατα µεγέθους 2n/3 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n. Ο αλγόριθµος Β για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δέκα υποπροβλήµατα µεγέθους 4n/10 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n2 . Ο αλγόριθµος Γ για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά ένα υποπρόβληµα µεγέθους n-1 το καθένα και εξάγει την τελική λύση µε 5 πράξεις. Να βρεθούν οι ασυµπτωτικοί χρόνοι επίλυσης του προβλήµατος για κάθε αλγόριθµο και να επιλέξετε τον ταχύτερο αλγόριθµο για την επίλυση του προβλήµατος. Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις: log log ( ) ( ), ( )b ba a (1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−− = Θ= Θ= Θ= Θ log log ( ) ( ), ( log )b ba a (2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ log ( ) ( ), , ( ( )). b a 0 0 (3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια n ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n b εεεε++++ = Ω= Ω= Ω= Ω      ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ         
  • 3. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 3 ΘΕΜΑ 2: (Μονάδες 20/20) ∆ίδεται η ακολουθία 2 3 µε 0 και 1 1. Υπολογίστε τα , , 2. Προτείνετε έναν αλγόριθµο δυναµικού προγραµµατισµού που υπολογίζει τον n-οστό όρο της ακολουθίας 3. Υπολογίστε την πολυπλοκότητα του αλγόριθµου που προτείνατε στο (2)
  • 4. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 4 ΘΕΜΑ 3: (Μονάδες 20/20) 1. ∆ίδεται η κανονική έκφραση: 1*10*1* (Α) ∆ώστε ένα Μη Ντετερµινιστικό ΠΑ που αναγνωρίζει τις συµβολοσειρές που παράγονται από την παραπάνω κανονική έκφραση. (Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό Πεπερασµένο Αυτόµατο του ερωτήµατος Α (Γ) ∆ώστε Κανονική Γραµµατική για το ντετερµινιστικό ΠΑ του ερωτήµατος Β
  • 5. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 5 2. Ποια από τις παρακάτω γλώσσες είναι κανονική και ποια όχι; Για να αποδείξετε ότι κάποια από τις γλώσσες δεν είναι κανονική χρησιµοποιέιστε το λήµµα της άντλησης. Για να αποδείξετε ότι είναι κανονική δώστε την αντίστοιχη κανονική έκφραση. A = {an bm ak | n ≥ 0, m ≥ 0, k ≥ 0} B = {an bm ak | n<2, m ≥ 0, k=0} Γ = {an bm ak | n ≥m, k ≥ 2} ∆ = {an bm ak | n ≥ 2, m ≥ 2, k ≥ 2} E = {an bm ak | n<m<k} Το Λήµµα Άντλησης για Κανονικές Γλώσσες: Έστω µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε ∈ µε | | να µπορεί να γραφεί στην µορφή όπου για τις συµβολοσειρές , και ισχύει: | | ∈ για κάθε φυσικό
  • 6. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 6 ΘΕΜΑ 4: (Μονάδες 20/20) Ποια από τις παρακάτω γλώσσες είναι χωρίς συµφραζόµενα και ποια δεν είναι; L1 = {an bk cm | n+m<k}. L2 = {an bk cm | n<m<k}. (A) Για την γλώσσα που είναι χωρίς συµφραζόµενα: (1) ∆ώστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της. (2) ∆ώστε ντετερµινιστικό αυτόµατο στοίβας που αναγνωρίζει τις συµβολοσειρές της: a. Περιγράψτε άτυπα τη λειτουργία του Μ. b. ∆ώστε την πλήρη περιγραφή του Μ (σύνολο καταστάσεων, αλφάβητα εισόδου και στοίβας, αρχική κατάσταση, αρχικό σύµβολο στοίβας, συνάρτηση µετάβασης και σύνολο τελικών καταστάσεων). Για την περιγραφή της συνάρτησης µετάβασης µπορείτε να χρησιµοποιήσετε πίνακα.
  • 7. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 7 (Β) Για την γλώσσα που δεν είναι χωρίς συµφραζόµενα,δώστε τυπική απόδειξη µε το 2ο λήµµα άντλησης: Το Λήµµα Άντλησης για Γλώσσες Ανεξάρτητες Συµφραζοµένων Έστω µια άπειρη γλώσσα ανεξάρτητη συµφραζοµένων. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε s ∈ µε |s| να µπορεί να γραφεί στην µορφή " #$%&' όπου για τις συµβολοσειρές #, $, %, & και ' ισχύει: |$%&| |$&| ( 0 #$) %&) ' ∈ για κάθε φυσικό * 0
  • 8. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 8 ΘΕΜΑ 5: (Μονάδες 20/20) Α: Κατασκευάστε Μ.Τ. που αποφασίζει την γλώσσα L={(01)n (20)n | n≥0} του αλφαβήτου {0,1,2} µε αλφάβητο ταινίας το {#,$,0,1,2} Β: ∆εδοµένου ότι η γλώσσα L={M,w | H M τερµατίζει µε είσοδο w} δεν είναι επιλύσιµη δείξτε ότι η γλώσσα L’={M,w,q1,q2 | H M µε είσοδο w µεταβαίνει από την κατάσταση q1 στην κατάσταση q2} δεν είναι επιλύσιµη.
  • 9. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 2 9 ΘΕΜΑ 6: (Μονάδες 20/20) Α. Στο πρόβληµα της ΕΠΤΑΠΛΗΣ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ δίνεται µια φόρµουλα φ σε κανονική συζευκτική µορφή και ερωτάται αν υπάρχουν τουλάχιστον 7 αποτιµήσεις που την ικανοποιούν. Εξετάστε αν η ΕΠΤΑΠΛΗ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑ ανήκει στην NP. B. ∆ώστε πολυωνυµική αναγωγή του προβλήµατος της ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ στο πρόβληµα της ΕΠΤΑΠΛΗΣ ΙΚΑΝΟΠΟΙΗΣΙΜΟΤΗΤΑΣ.