ΠΛΗ30 ΤΕΣΤ 18

Dimitris Psounis
Dimitris PsounisTeacher & Manager at Δημήτρης Ψούνης - Υπηρεσίες Εκπαίδευσης

1.1) Ιεραρχία Συναρτήσεων 1.2) Αναδρομικές Σχέσεις (Θεώρημα Κυριαρχίας) 3.1) Κανονική Έκφραση σε ΜΠΑ 3.2) 00*1*+1: ΜΠΑε σε ΜΠΑ σε ΝΠΑ 3.3) (0+1)*11(0+1)*: ΜΠΑ σε ΝΠΑ. Απλοποίηση ΝΠΑ. Απόδειξη Ελάχιστου Πλήθους Καταστάσεων 4.1) Γραμματικές Χωρίς Συμφραζόμενα 4.2) Διακριση Κανονικών Γλωσσών και Γλωσσών Χωρίς Συμφραζόμενα

∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 1
ΠΛΗ30 – ΤΕΣΤ18
ΘΕΜΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
(Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους:
nn
nn
nnnf
nnnf
nnnnf
nnnnnnnf
)(log)(
)(
loglnlog)(
)log(loglog)(
log
4
2
3
42
222
1
+=
+=
++=
++=
Ο συµβολισµός log παριστάνει λογάριθµο µε βάση το 2. . Η συνάρτηση f έχει την ίδια τάξη µεγέθους (ίδιο ρυθµό αύξησης) µε την g (f
≡ g), αν f = Θ(g) (ισοδύναµα Θ(f) = Θ(g)). Η συνάρτηση f έχει µικρότερη τάξη µεγέθους (µικρότερο ρυθµό αύξησης) από την g (f <
g), αν f = o(g).
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 2
(Β) Να λύσετε τις αναδροµές:
4
2
2
16)()1( n
n
TnT +





=
7 6
128
64)()2( n
n
TnT +





=
105
)()3(
nn
TnT +





=
Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη µεγέθους.
Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και
f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις:
log log
( ) ( ), ( )b ba a
(1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−−
= Θ= Θ= Θ= Θ
log log
( ) ( ), ( log )b ba a
(2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ
log
( ) ( ), ,
( ( )).
b a
0
0
(3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια
n
ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n
b
εεεε++++
= Ω= Ω= Ω= Ω
    
≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ    
    
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 3
ΘΕΜΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ
Άσκηση 1: Κατασκευάστε ΜΠΑ για τις κανονικές εκφράσεις:
L1 = 110*11
L2 = (01+11+00)*
L3 = 1*0*1*+ 0*1*0*
L4 = (00)*(11)* (01)*(100)*
L5 = (101*11)*
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 4
Άσκηση 2: ∆ίδεται η κανονική έκφραση: 00*1*+1
(A) ∆ώστε Μη Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΜΠΑ) της L
(Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΝΠΑ) της L
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 5
Άσκηση 3: ∆ίδεται η κανονική έκφραση: (0+1)*11(0+1)*
(A) ∆ώστε Μη Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΜΠΑ) της L
(Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΝΠΑ) της L
(Γ) Ελαχιστοποιήστε τις καταστάσεις του ΝΠΑ του ερωτήµατος Β
(∆) Αποδείξτε ότι το παραπάνω ΝΠΑ του ερωτήµατος Γ έχει το ελάχιστο πλήθος καταστάσεων,
δίνοντας ένα κατάλληλο πλήθος διακρινόµενων ανά δύο συµβολοσειρών.
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 6
ΘΕΜΑ 4: ΓΛΩΣΣΕΣ ΑΝΕΞΑΡΤΗΤΕΣ ΣΥΜΦΡΑΖΟΜΕΝΩΝ
Άσκηση 1: ∆ώστε γραµµατικές χωρίς συµφραζόµενα για τις γλώσσες:
L = |	 ≥ 0}
L = |	 , ≥ 0}
L = |	 ≥ 0}
L = 	 ∈ , }∗
	|	 	 ί 	 !"#$ %ή}
L' = ( (
)	 , , * ≥ 0}
L+ = |	 > }
L- = |	 = + 1	ή	 = 2 }
∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 7
Άσκηση 2
∆ίδονται οι γλώσσες του αλφαβήτου {a,b,c}:
εκ των οποίων η µία είναι κανονική και η άλλη δεν είναι κανονική.
(A) Επιλέξτε την γλώσσα που είναι κανονική και αποδείξτε το, δίνοντας την κανονική έκφραση
που παράγει τις συµβολοσειρές της.
(Β) Για την γλώσσα που δεν είναι κανονική: (1) Αποδείξτε µε το λήµµα άντλησης ότι δεν είναι
κανονική. (2) ∆ωστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της
(3) ∆ώστε Ντετερµινιστικό Αυτόµατο Στοίβας που αναγνωρίζει τις συµβολοσειρές της
Το Λήµµα Άντλησης για Κανονικές Γλώσσες:
Έστω 1 µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός 2 (µήκος άντλησης) τέτοιος ώστε κάθε 3 ∈ 1 µε |4| ≥ 2 να
µπορεί να γραφεί στην µορφή 3 = 567 όπου για τις συµβολοσειρές 5, 6 και 7 ισχύει:
|56| ≤ 2
6 ≠ :
56;
7 ∈ 1 για κάθε φυσικό ; ≥ <
}0,|{},|{ 21 ≥=>= mncbaLmncbaL mnmn

Recommended

ΠΛΗ30 ΤΕΣΤ 25 by
ΠΛΗ30 ΤΕΣΤ 25ΠΛΗ30 ΤΕΣΤ 25
ΠΛΗ30 ΤΕΣΤ 25Dimitris Psounis
951 views8 slides
ΠΛΗ30 ΤΕΣΤ 7 by
ΠΛΗ30 ΤΕΣΤ 7ΠΛΗ30 ΤΕΣΤ 7
ΠΛΗ30 ΤΕΣΤ 7Dimitris Psounis
1.9K views3 slides
ΠΛΗ30 ΤΕΣΤ 8 by
ΠΛΗ30 ΤΕΣΤ 8ΠΛΗ30 ΤΕΣΤ 8
ΠΛΗ30 ΤΕΣΤ 8Dimitris Psounis
2.3K views3 slides
ΠΛΗ30 ΤΕΣΤ 12 by
ΠΛΗ30 ΤΕΣΤ 12ΠΛΗ30 ΤΕΣΤ 12
ΠΛΗ30 ΤΕΣΤ 12Dimitris Psounis
1.5K views4 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 4Dimitris Psounis
1.2K views9 slides
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3 by
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 3Dimitris Psounis
1K views10 slides

More Related Content

What's hot

ΠΛΗ30 ΤΕΣΤ 27 by
ΠΛΗ30 ΤΕΣΤ 27ΠΛΗ30 ΤΕΣΤ 27
ΠΛΗ30 ΤΕΣΤ 27Dimitris Psounis
921 views9 slides
ΠΛΗ30 ΤΕΣΤ 11 by
ΠΛΗ30 ΤΕΣΤ 11ΠΛΗ30 ΤΕΣΤ 11
ΠΛΗ30 ΤΕΣΤ 11Dimitris Psounis
1.8K views5 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 3Dimitris Psounis
1.3K views9 slides
ΠΛΗ30 ΤΕΣΤ 22 by
ΠΛΗ30 ΤΕΣΤ 22ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22Dimitris Psounis
444 views7 slides
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6 by
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 6Dimitris Psounis
1.1K views9 slides
ΠΛΗ30 ΤΕΣΤ 19 by
ΠΛΗ30 ΤΕΣΤ 19ΠΛΗ30 ΤΕΣΤ 19
ΠΛΗ30 ΤΕΣΤ 19Dimitris Psounis
521 views6 slides

What's hot(20)

ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2 by Dimitris Psounis
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2
Dimitris Psounis1.3K views
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1 by Dimitris Psounis
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ30 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis6K views

Viewers also liked

ΠΛΗ30 ΤΕΣΤ 20 by
ΠΛΗ30 ΤΕΣΤ 20ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20Dimitris Psounis
558 views7 slides
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5 by
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5
ΠΛΗ30 ΕΠΑΝΑΛΗΨΗ 5Dimitris Psounis
1.9K views3 slides
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7 by
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7
ΠΛΗ20 ΔΙΑΓΩΝΙΣΜΑ 7Dimitris Psounis
723 views7 slides
ΠΛΗ20 ΤΕΣΤ 21 by
ΠΛΗ20 ΤΕΣΤ 21ΠΛΗ20 ΤΕΣΤ 21
ΠΛΗ20 ΤΕΣΤ 21Dimitris Psounis
609 views6 slides
ΠΛΗ31 ΤΕΣΤ 5 by
ΠΛΗ31 ΤΕΣΤ 5ΠΛΗ31 ΤΕΣΤ 5
ΠΛΗ31 ΤΕΣΤ 5Dimitris Psounis
2.7K views3 slides
ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ) by
ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
7.2K views8 slides

Viewers also liked(13)

Similar to ΠΛΗ30 ΤΕΣΤ 18

ΠΛΗ30 ΤΕΣΤ 23 by
ΠΛΗ30 ΤΕΣΤ 23ΠΛΗ30 ΤΕΣΤ 23
ΠΛΗ30 ΤΕΣΤ 23Dimitris Psounis
1K views7 slides
ΠΛΗ30 ΤΕΣΤ 20 by
ΠΛΗ30 ΤΕΣΤ 20ΠΛΗ30 ΤΕΣΤ 20
ΠΛΗ30 ΤΕΣΤ 20Dimitris Psounis
796 views7 slides
ΠΛΗ30 ΤΕΣΤ 22 by
ΠΛΗ30 ΤΕΣΤ 22ΠΛΗ30 ΤΕΣΤ 22
ΠΛΗ30 ΤΕΣΤ 22Dimitris Psounis
743 views7 slides
ΠΛΗ30 ΤΕΣΤ 21 by
ΠΛΗ30 ΤΕΣΤ 21ΠΛΗ30 ΤΕΣΤ 21
ΠΛΗ30 ΤΕΣΤ 21Dimitris Psounis
812 views8 slides
ΠΛΗ30 by
ΠΛΗ30ΠΛΗ30
ΠΛΗ30Dimitris Psounis
1.3K views5 slides
ΠΛΗ30 ΤΕΣΤ 15 by
ΠΛΗ30 ΤΕΣΤ 15ΠΛΗ30 ΤΕΣΤ 15
ΠΛΗ30 ΤΕΣΤ 15Dimitris Psounis
1.2K views5 slides

Similar to ΠΛΗ30 ΤΕΣΤ 18(20)

ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1 by Dimitris Psounis
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
ΠΛΗ30 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 1
Dimitris Psounis1.9K views

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣDimitris Psounis
4.9K views25 slides
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ) by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Dimitris Psounis
641 views7 slides
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ) by
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)Dimitris Psounis
475 views8 slides
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ by
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣDimitris Psounis
1.4K views29 slides
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣDimitris Psounis
5.9K views30 slides
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ) by
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Dimitris Psounis
3.8K views8 slides

More from Dimitris Psounis(20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Dimitris Psounis4.9K views
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ) by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Dimitris Psounis641 views
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ) by Dimitris Psounis
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
Dimitris Psounis475 views
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ by Dimitris Psounis
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
Dimitris Psounis1.4K views
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Dimitris Psounis5.9K views
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ) by Dimitris Psounis
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Dimitris Psounis3.8K views
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C by Dimitris Psounis
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
Dimitris Psounis2.3K views
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p) by Dimitris Psounis
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
Dimitris Psounis331 views
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6 by Dimitris Psounis
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
Dimitris Psounis2.9K views
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5 by Dimitris Psounis
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
Dimitris Psounis899 views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.5K views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
Dimitris Psounis2.5K views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis4.6K views
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 by Dimitris Psounis
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
Dimitris Psounis4.5K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
Dimitris Psounis3.2K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.2K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
Dimitris Psounis3.2K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.1K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
Dimitris Psounis3.9K views
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ) by Dimitris Psounis
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
Dimitris Psounis2.8K views

Recently uploaded

Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;" by
Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;"Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;"
Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;"gymkeram
20 views22 slides
XwrosSigkentrosisSePeriptwsiAnagkisΑ3.docx by
XwrosSigkentrosisSePeriptwsiAnagkisΑ3.docxXwrosSigkentrosisSePeriptwsiAnagkisΑ3.docx
XwrosSigkentrosisSePeriptwsiAnagkisΑ3.docx56ο Γυμνάσιο Αθήνας
7 views1 slide
36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx by
36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx
36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx36dimperist
41 views3 slides
Imerida_36_Dec_2023.pptx by
Imerida_36_Dec_2023.pptxImerida_36_Dec_2023.pptx
Imerida_36_Dec_2023.pptx36dimperist
51 views7 slides
MitsiPikramenouSinSig-3F.pdf by
MitsiPikramenouSinSig-3F.pdfMitsiPikramenouSinSig-3F.pdf
MitsiPikramenouSinSig-3F.pdfTassos Karampinis
43 views9 slides
MitsiPikramenouSinAmp-4F.pdf by
MitsiPikramenouSinAmp-4F.pdfMitsiPikramenouSinAmp-4F.pdf
MitsiPikramenouSinAmp-4F.pdfTassos Karampinis
33 views14 slides

Recently uploaded(20)

Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;" by gymkeram
Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;"Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;"
Ενεργώ ως Πολίτης - Δράση "Είναι όλα τα λεμόνια ίδια;"
gymkeram20 views
36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx by 36dimperist
36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx
36_Dim_Perist_Stolismos_B_Taxi_Xmas_2023.pptx
36dimperist41 views
Imerida_36_Dec_2023.pptx by 36dimperist
Imerida_36_Dec_2023.pptxImerida_36_Dec_2023.pptx
Imerida_36_Dec_2023.pptx
36dimperist51 views
Σχολές, Σπουδές & Πανελλαδικές 2024 by EmployEdu
Σχολές, Σπουδές & Πανελλαδικές 2024Σχολές, Σπουδές & Πανελλαδικές 2024
Σχολές, Σπουδές & Πανελλαδικές 2024
EmployEdu125 views
Μύρισε Χριστούγεννα στο Γυμνάσιο Κεραμωτής.pptx by gymkeram
Μύρισε Χριστούγεννα στο Γυμνάσιο Κεραμωτής.pptxΜύρισε Χριστούγεννα στο Γυμνάσιο Κεραμωτής.pptx
Μύρισε Χριστούγεννα στο Γυμνάσιο Κεραμωτής.pptx
gymkeram49 views
Από τον μαγνητισμό στον ηλεκτρισμό by Dimitra Mylonaki
Από τον μαγνητισμό στον ηλεκτρισμόΑπό τον μαγνητισμό στον ηλεκτρισμό
Από τον μαγνητισμό στον ηλεκτρισμό
Dimitra Mylonaki12 views
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ... by 2lykkomo
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...
ΕΞΕ - 136784 - 2023 - Υποβολή δικαιολογητικών για προφορική ή γραπτή εξέταση ...
2lykkomo1.3K views
Γυμνάσιο Κεραμωτής: Διδακτική επίσκεψη στο Ίδρυμα Ορμύλια 28.11.2023 by gymkeram
Γυμνάσιο Κεραμωτής: Διδακτική επίσκεψη στο Ίδρυμα Ορμύλια 28.11.2023Γυμνάσιο Κεραμωτής: Διδακτική επίσκεψη στο Ίδρυμα Ορμύλια 28.11.2023
Γυμνάσιο Κεραμωτής: Διδακτική επίσκεψη στο Ίδρυμα Ορμύλια 28.11.2023
gymkeram77 views
Σχολές, Σπουδές & Πανελλαδικές 2024_2 by EmployEdu
Σχολές, Σπουδές & Πανελλαδικές 2024_2Σχολές, Σπουδές & Πανελλαδικές 2024_2
Σχολές, Σπουδές & Πανελλαδικές 2024_2
EmployEdu282 views
1ος Περίπατος Γυμνασίου Κεραμωτής 2023 στον Αλιευτικό Συνεταιρισμό - 09.11.23 by gymkeram
1ος Περίπατος Γυμνασίου Κεραμωτής 2023 στον Αλιευτικό Συνεταιρισμό - 09.11.23 1ος Περίπατος Γυμνασίου Κεραμωτής 2023 στον Αλιευτικό Συνεταιρισμό - 09.11.23
1ος Περίπατος Γυμνασίου Κεραμωτής 2023 στον Αλιευτικό Συνεταιρισμό - 09.11.23
gymkeram11 views
ΠΕΡΙΚΛΕΟΥΣ ΕΠΙΤΑΦΙΟΣ, ΚΕΦ 39 by ssuser43d27b
ΠΕΡΙΚΛΕΟΥΣ ΕΠΙΤΑΦΙΟΣ, ΚΕΦ 39ΠΕΡΙΚΛΕΟΥΣ ΕΠΙΤΑΦΙΟΣ, ΚΕΦ 39
ΠΕΡΙΚΛΕΟΥΣ ΕΠΙΤΑΦΙΟΣ, ΚΕΦ 39
ssuser43d27b18 views
Παγκόσμια Ημέρα Ατόμων με Αναπηρία.pptx by 7gymnasiokavalas
Παγκόσμια Ημέρα Ατόμων με Αναπηρία.pptxΠαγκόσμια Ημέρα Ατόμων με Αναπηρία.pptx
Παγκόσμια Ημέρα Ατόμων με Αναπηρία.pptx
7gymnasiokavalas42 views
Συμμετοχή Γυμνασίου Κεραμωτής στο πρόγραμμα "Kids save lives" - "Τα παιδιά σώ... by gymkeram
Συμμετοχή Γυμνασίου Κεραμωτής στο πρόγραμμα "Kids save lives" - "Τα παιδιά σώ...Συμμετοχή Γυμνασίου Κεραμωτής στο πρόγραμμα "Kids save lives" - "Τα παιδιά σώ...
Συμμετοχή Γυμνασίου Κεραμωτής στο πρόγραμμα "Kids save lives" - "Τα παιδιά σώ...
gymkeram12 views
Βεβαίωση παρακολούθησης_Μπορουμε στο σχολείο_7ο Γυμνάσιο Καβάλας.pdf by 7gymnasiokavalas
Βεβαίωση παρακολούθησης_Μπορουμε στο σχολείο_7ο Γυμνάσιο Καβάλας.pdfΒεβαίωση παρακολούθησης_Μπορουμε στο σχολείο_7ο Γυμνάσιο Καβάλας.pdf
Βεβαίωση παρακολούθησης_Μπορουμε στο σχολείο_7ο Γυμνάσιο Καβάλας.pdf
7gymnasiokavalas15 views

ΠΛΗ30 ΤΕΣΤ 18

  • 1. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 1 ΠΛΗ30 – ΤΕΣΤ18 ΘΕΜΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ (Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους: nn nn nnnf nnnf nnnnf nnnnnnnf )(log)( )( loglnlog)( )log(loglog)( log 4 2 3 42 222 1 += += ++= ++= Ο συµβολισµός log παριστάνει λογάριθµο µε βάση το 2. . Η συνάρτηση f έχει την ίδια τάξη µεγέθους (ίδιο ρυθµό αύξησης) µε την g (f ≡ g), αν f = Θ(g) (ισοδύναµα Θ(f) = Θ(g)). Η συνάρτηση f έχει µικρότερη τάξη µεγέθους (µικρότερο ρυθµό αύξησης) από την g (f < g), αν f = o(g).
  • 2. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 2 (Β) Να λύσετε τις αναδροµές: 4 2 2 16)()1( n n TnT +      = 7 6 128 64)()2( n n TnT +      = 105 )()3( nn TnT +      = Στη συνέχεια, να διαταχθούν οι λύσεις τους κατά αύξουσα τάξη µεγέθους. Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις: log log ( ) ( ), ( )b ba a (1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−− = Θ= Θ= Θ= Θ log log ( ) ( ), ( log )b ba a (2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ log ( ) ( ), , ( ( )). b a 0 0 (3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια n ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n b εεεε++++ = Ω= Ω= Ω= Ω      ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ         
  • 3. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 3 ΘΕΜΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ Άσκηση 1: Κατασκευάστε ΜΠΑ για τις κανονικές εκφράσεις: L1 = 110*11 L2 = (01+11+00)* L3 = 1*0*1*+ 0*1*0* L4 = (00)*(11)* (01)*(100)* L5 = (101*11)*
  • 4. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 4 Άσκηση 2: ∆ίδεται η κανονική έκφραση: 00*1*+1 (A) ∆ώστε Μη Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΜΠΑ) της L (Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΝΠΑ) της L
  • 5. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 5 Άσκηση 3: ∆ίδεται η κανονική έκφραση: (0+1)*11(0+1)* (A) ∆ώστε Μη Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΜΠΑ) της L (Β) ∆ώστε το ισοδύναµο Ντετερµινιστικό Πεπερασµένο Αυτόµατο (ΝΠΑ) της L (Γ) Ελαχιστοποιήστε τις καταστάσεις του ΝΠΑ του ερωτήµατος Β (∆) Αποδείξτε ότι το παραπάνω ΝΠΑ του ερωτήµατος Γ έχει το ελάχιστο πλήθος καταστάσεων, δίνοντας ένα κατάλληλο πλήθος διακρινόµενων ανά δύο συµβολοσειρών.
  • 6. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 6 ΘΕΜΑ 4: ΓΛΩΣΣΕΣ ΑΝΕΞΑΡΤΗΤΕΣ ΣΥΜΦΡΑΖΟΜΕΝΩΝ Άσκηση 1: ∆ώστε γραµµατικές χωρίς συµφραζόµενα για τις γλώσσες: L = | ≥ 0} L = | , ≥ 0} L = | ≥ 0} L = ∈ , }∗ | ί !"#$ %ή} L' = ( ( ) , , * ≥ 0} L+ = | > } L- = | = + 1 ή = 2 }
  • 7. ∆ηµήτρης Ψούνης – ΠΛΗ30, Τέστ 18 7 Άσκηση 2 ∆ίδονται οι γλώσσες του αλφαβήτου {a,b,c}: εκ των οποίων η µία είναι κανονική και η άλλη δεν είναι κανονική. (A) Επιλέξτε την γλώσσα που είναι κανονική και αποδείξτε το, δίνοντας την κανονική έκφραση που παράγει τις συµβολοσειρές της. (Β) Για την γλώσσα που δεν είναι κανονική: (1) Αποδείξτε µε το λήµµα άντλησης ότι δεν είναι κανονική. (2) ∆ωστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της (3) ∆ώστε Ντετερµινιστικό Αυτόµατο Στοίβας που αναγνωρίζει τις συµβολοσειρές της Το Λήµµα Άντλησης για Κανονικές Γλώσσες: Έστω 1 µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός 2 (µήκος άντλησης) τέτοιος ώστε κάθε 3 ∈ 1 µε |4| ≥ 2 να µπορεί να γραφεί στην µορφή 3 = 567 όπου για τις συµβολοσειρές 5, 6 και 7 ισχύει: |56| ≤ 2 6 ≠ : 56; 7 ∈ 1 για κάθε φυσικό ; ≥ < }0,|{},|{ 21 ≥=>= mncbaLmncbaL mnmn