SlideShare a Scribd company logo

ΠΛΗ10 ΜΑΘΗΜΑ 1.3

1) Εισαγωγή 1.1) Λογικά Κυκλώματα και Λογικές Πύλες 1.2) Άλγεβρα Boole 1.3) Λογικές Συναρτήσεις 1.4) Πίνακες Αλήθειας 2) Λογικές Πύλες 2.1) Λογική Πύλη NOT 2.2) Λογική Πύλη OR 2.3) Λογική Πύλη AND 2.4) Λογική Πύλη NOR 2.5) Λογική Πύλη NAND 2.6) Λογική Πύλη XOR 2.7) Λογική Πύλη XNOR 3) Μελέτη Κυκλωμάτων 3.1) Εισαγωγή 3.2) Από Λογική Συνάρτηση σε Αληθοπίνακα 3.3) Από Αληθοπίνακα σε Λογική Συνάρτηση 3.4) Από Αληθοπίνακα σε Κύκλωμα 3.5) Από Κύκλωμα σε Αληθοπίνακα 3.6) Από Κύκλωμα σε Λογική Συνάρτηση 3.7) Προβλήματα και Κυκλώματα

1 of 31
Download to read offline
ΠΛΗ10
ΕΝΟΤΗΤΑ 1: Εισαγωγή στους Η/Υ
Μάθηµα 1.3:
Λογικές Πύλες
∆ηµήτρης Ψούνης
A. Θεωρία
1. Εισαγωγή
1. Λογικά Κυκλώµατα και Λογικές Πύλες
2. Άλγεβρα Boole
3. Λογικές Συναρτήσεις
4. Πίνακες Αλήθειας
2. Λογικές Πύλες
1. Λογική Πύλη NOT
2. Λογική Πύλη OR
3. Λογική Πύλη AND
4. Λογική Πύλη NOR
5. Λογική Πύλη NAND
6. Λογική Πύλη XOR
7. Λογική Πύλη XNOR
2∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες
Περιεχόµενα Μαθήµατος
3. Μελέτη Κυκλωµάτων
1. Εισαγωγή
2. Από Λογική Συνάρτηση σε Αληθοπίνακα
3. Από Αληθοπίνακα σε Λογική Συνάρτηση
4. Από Αληθοπίνακα σε Κύκλωµα
5. Από Κύκλωµα σε Αληθοπίνακα
6. Από Κύκλωµα σε Λογική Συνάρτηση
7. Προβλήµατα και Κυκλώµατα
A. Θεωρία
1. Εισαγωγή
1. Λογικά Κυκλώµατα και Λογικές Πύλες
• Ο επεξεργαστής του υπολογιστή λειτουργεί µε λογικά κυκλώµατα τα οποία εκτελούν τους
υπολογισµούς που θέτουµε µέσω των προγραµµάτων.
• Τα απλούστερα λογικά κυκλώµατα που είναι και τα δοµικά στοιχεία που ορίζουν τον
επεξεργαστή είναι οι λογικές πύλες.
• Οι λογικές πύλες εκτελούν πολύ απλές πράξεις, αλλά συνθέτοντας τα σε λογικά
κυκλώµατα µπορούµε να πραγµατοποιήσουµε πιο περίπλοκες πράξεις!
• Στο µάθηµα αυτό θα µελετήσουµε τις λογικές πύλες και θα δούµε πως συνδυάζονται για να
κατασκευάσουν λογικά κυκλώµατα.
3∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες
Πύλη NOT
Πύλη AND Πύλη OR Πύλη XOR
Πύλη NAND Πύλη NOR Πύλη XNOR
A. Θεωρία
1. Εισαγωγή
2. Άλγεβρα Boole
• Η άλγεβρα Boole είναι ένας κλάδος των µαθηµατικών που οι τιµές των µεταβλητών παίρνουν
µόνο δύο τιµές: Αληθές (συµβολίζεται µε 1) και Ψευδές (συµβολίζεται µε 0)
• Έπειτα ορίζονται και οι εξής πράξεις επί των µεταβλητών:
• Λογικό ΚΑΙ που συµβολίζεται µε το σύνηθες σύµβολο του πολλαπλασιασµού ( ∙ )
• Λογικό ‘Η που συµβολίζεται µε το σύνηθες σύµβολο της πρόσθεσης ( )
• Λογικό ΌΧΙ (συµπλήρωµα) που συµβολίζεται µε έναν τόνο µετά το όνοµα της µεταβλητής
• Και ορίζεται ότι η προτεραιότητα των πράξεων (αν αυτή δεν καθορίζεται µε παρενθέσεις)
• Πρώτα το ΌΧΙ, µετά ο ΠΟΛ/ΜΟΣ (λογικό ΚΑΙ) και τέλος η ΠΡΟΣΘΕΣΗ (λογικό Ή)
4∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες
Οι βασικές πράξεις της άλγεβρας Boole είναι
Πρόσθεση (x 	:
Ισχύουν:
0 0 0
0 1 1
1 0 1
1 1 1
Συµπλήρωµα ( ′ 	:
Ισχύουν:
0′ 1
1′ 0
Πολ/µος (x ∙ 	:
Ισχύουν:
0 ∙ 0 0
0 ∙ 1 0
1 ∙ 0 0
1 ∙ 1 1
Μόνη διαφορά σε σχέση µε την άλγεβρα
A. Θεωρία
1. Εισαγωγή
3. Λογικές Συναρτήσεις
• Μία συνάρτηση που δέχεται ως ορίσµατα λογικές µεταβλητές κάνει έναν υπολογισµό της
άλγεβρας Boole και επιστρέφει 0 ή 1 καλείται λογική συνάρτηση.
5∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες
Παράδειγµα:
Η ακόλουθη λογική συνάρτηση εκτελεί µία σειρά από λογικές πράξεις στα ορίσµατά της:
, , ′
Και έτσι για παράδειγµα αν το X=1, το Y=0 και το Ζ=1 η επιστρεφόµενη τιµή της
συνάρτησης θα είναι:
1,0,1 1 ∙ 0 1 0 0 0
Παρατήρηση:
Κάθε λογικό κύκλωµα θα υλοποιεί µία λογική συνάρτηση.
ορίσµατα Σώµα συνάρτησης
Παρατήρηση:
Η προτεραιότητα των πράξεων είναι σηµαντικό να είναι ενστικτώδες κτήµα µας.
π.χ εδώ ισχύει ότι η προτεραιότητα είναι:
(πρώτα συµπλήρωµα, έπειτα πολ/µος, έπειτα πρόσθεση)
A. Θεωρία
1. Εισαγωγή
4. Πίνακες Αλήθειας
• Καθότι µια λογική συνάρτηση µπορεί να πάρει συγκεκριµένο πλήθος τιµών (όχι άπειρο), ο
πίνακας αλήθειας χρησιµοποιείται για να παρουσιάσει την έξοδο της συνάρτησης για κάθε
συνδυασµό εισόδων
6∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες
Παράδειγµα 2:
Ο πίνακας αλήθειας της συνάρτησης:
, , ′
Παράδειγµα 1:
Ο πίνακας αλήθειας της
, ′ Υ′
είναι:
Υ ,
0 0 1	
0 1 1
1 0 1
1 1 0
Υ Ζ , ,
0 0 0 1	
0 0 1 0
0 1 0 1
0 1 1 0	
1 0 0 1	
1 0 1 0
1 1 0 1
1 1 1 1
Ad

Recommended

ΠΛΗ10 ΜΑΘΗΜΑ 2.1
ΠΛΗ10 ΜΑΘΗΜΑ 2.1 ΠΛΗ10 ΜΑΘΗΜΑ 2.1
ΠΛΗ10 ΜΑΘΗΜΑ 2.1 Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 2 Dimitris Psounis
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
το εσωτερικο του υπολογιστη
το εσωτερικο του υπολογιστητο εσωτερικο του υπολογιστη
το εσωτερικο του υπολογιστηPopi Magaliou
 

More Related Content

What's hot

ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
Εισαγωγή στις αρχές της επιστήμης των Η/Υ
Εισαγωγή στις αρχές της επιστήμης των Η/ΥΕισαγωγή στις αρχές της επιστήμης των Η/Υ
Εισαγωγή στις αρχές της επιστήμης των Η/ΥJohn Dimopoulos
 
ΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣ
ΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣ
ΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣDimitris Psounis
 
ΠΛΗ10 ΜΑΘΗΜΑ 2.6
ΠΛΗ10 ΜΑΘΗΜΑ 2.6 ΠΛΗ10 ΜΑΘΗΜΑ 2.6
ΠΛΗ10 ΜΑΘΗΜΑ 2.6 Dimitris Psounis
 
ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1
ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1
ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1Dimitris Psounis
 
Βασικές Έννοιες της Πληροφορικής
Βασικές Έννοιες της ΠληροφορικήςΒασικές Έννοιες της Πληροφορικής
Βασικές Έννοιες της Πληροφορικήςkiriakougr
 
Κεφ. 2 Βασικές Έννοιες Αλγορίθμων
Κεφ. 2 Βασικές Έννοιες ΑλγορίθμωνΚεφ. 2 Βασικές Έννοιες Αλγορίθμων
Κεφ. 2 Βασικές Έννοιες ΑλγορίθμωνΙωάννου Γιαννάκης
 
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣ
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣ
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣDimitris Psounis
 
ΠΛΗ31 ΜΑΘΗΜΑ 3.1
ΠΛΗ31 ΜΑΘΗΜΑ 3.1 ΠΛΗ31 ΜΑΘΗΜΑ 3.1
ΠΛΗ31 ΜΑΘΗΜΑ 3.1 Dimitris Psounis
 
Φύλλο εργασίας για HTML & CSS
Φύλλο εργασίας για HTML & CSSΦύλλο εργασίας για HTML & CSS
Φύλλο εργασίας για HTML & CSSlyk-tragaias
 
κεφάλαιο 3 απαντήσεις στις ερωτήσεις βιβλίου
κεφάλαιο 3   απαντήσεις στις ερωτήσεις βιβλίουκεφάλαιο 3   απαντήσεις στις ερωτήσεις βιβλίου
κεφάλαιο 3 απαντήσεις στις ερωτήσεις βιβλίουΤΑΤΙΑΝΑ ΠΕΤΡΟΠΟΥΛΟΥ
 
ΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ
ΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ
ΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣDimitris Psounis
 

What's hot (20)

ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 (ΕΚΤΥΠΩΣΗ)
 
Εισαγωγή στις αρχές της επιστήμης των Η/Υ
Εισαγωγή στις αρχές της επιστήμης των Η/ΥΕισαγωγή στις αρχές της επιστήμης των Η/Υ
Εισαγωγή στις αρχές της επιστήμης των Η/Υ
 
ΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣ
ΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣ
ΠΛΗ10 ΜΑΘΗΜΑ 2.3: ΤΕΛΕΣΤΕΣ ΚΑΙ Η ΕΝΤΟΛΗ ΑΠΟΦΑΣΗΣ
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.4
ΠΛΗ10 ΜΑΘΗΜΑ 1.4ΠΛΗ10 ΜΑΘΗΜΑ 1.4
ΠΛΗ10 ΜΑΘΗΜΑ 1.4
 
ΠΛΗ10 ΜΑΘΗΜΑ 2.6
ΠΛΗ10 ΜΑΘΗΜΑ 2.6 ΠΛΗ10 ΜΑΘΗΜΑ 2.6
ΠΛΗ10 ΜΑΘΗΜΑ 2.6
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.5
ΠΛΗ10 ΜΑΘΗΜΑ 1.5ΠΛΗ10 ΜΑΘΗΜΑ 1.5
ΠΛΗ10 ΜΑΘΗΜΑ 1.5
 
ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1
ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1
ΠΛΗ10 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 1
 
Βασικές Έννοιες της Πληροφορικής
Βασικές Έννοιες της ΠληροφορικήςΒασικές Έννοιες της Πληροφορικής
Βασικές Έννοιες της Πληροφορικής
 
ΠΛΗ30 ΜΑΘΗΜΑ 1.2
ΠΛΗ30 ΜΑΘΗΜΑ 1.2ΠΛΗ30 ΜΑΘΗΜΑ 1.2
ΠΛΗ30 ΜΑΘΗΜΑ 1.2
 
ΠΛΗ31 ΜΑΘΗΜΑ 3.2
ΠΛΗ31 ΜΑΘΗΜΑ 3.2ΠΛΗ31 ΜΑΘΗΜΑ 3.2
ΠΛΗ31 ΜΑΘΗΜΑ 3.2
 
Κεφ. 2 Βασικές Έννοιες Αλγορίθμων
Κεφ. 2 Βασικές Έννοιες ΑλγορίθμωνΚεφ. 2 Βασικές Έννοιες Αλγορίθμων
Κεφ. 2 Βασικές Έννοιες Αλγορίθμων
 
Αναλογικό - Ψηφιακό
Αναλογικό - ΨηφιακόΑναλογικό - Ψηφιακό
Αναλογικό - Ψηφιακό
 
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣ
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣ
ΠΛΗ20 ΤΥΠΟΛΟΓΙΟ ΣΥΝΔΥΑΣΤΙΚΗΣ
 
ΠΛΗ31 ΜΑΘΗΜΑ 3.1
ΠΛΗ31 ΜΑΘΗΜΑ 3.1 ΠΛΗ31 ΜΑΘΗΜΑ 3.1
ΠΛΗ31 ΜΑΘΗΜΑ 3.1
 
Φύλλο εργασίας για HTML & CSS
Φύλλο εργασίας για HTML & CSSΦύλλο εργασίας για HTML & CSS
Φύλλο εργασίας για HTML & CSS
 
κεφάλαιο 3 απαντήσεις στις ερωτήσεις βιβλίου
κεφάλαιο 3   απαντήσεις στις ερωτήσεις βιβλίουκεφάλαιο 3   απαντήσεις στις ερωτήσεις βιβλίου
κεφάλαιο 3 απαντήσεις στις ερωτήσεις βιβλίου
 
Βασικές έννοιες της Πληροφορικής
Βασικές έννοιες της ΠληροφορικήςΒασικές έννοιες της Πληροφορικής
Βασικές έννοιες της Πληροφορικής
 
ΠΛΗ20 ΜΑΘΗΜΑ 2.3
ΠΛΗ20 ΜΑΘΗΜΑ 2.3ΠΛΗ20 ΜΑΘΗΜΑ 2.3
ΠΛΗ20 ΜΑΘΗΜΑ 2.3
 
ΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ
ΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ
ΓΛΩΣΣΑ C - ΜΑΘΗΜΑ 5 - ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ
 
ΠΛΗ31 ΜΑΘΗΜΑ 3.5
ΠΛΗ31 ΜΑΘΗΜΑ 3.5ΠΛΗ31 ΜΑΘΗΜΑ 3.5
ΠΛΗ31 ΜΑΘΗΜΑ 3.5
 

Viewers also liked

ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4Dimitris Psounis
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4Dimitris Psounis
 
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2Dimitris Psounis
 
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ31 ΜΑΘΗΜΑ 2.4
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 ΠΛΗ31 ΜΑΘΗΜΑ 2.4
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 Dimitris Psounis
 
ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4
ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4
ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4Dimitris Psounis
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2Dimitris Psounis
 
PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)
PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)
PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1Dimitris Psounis
 
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1Dimitris Psounis
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 

Viewers also liked (20)

ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 1.3 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑ 1.3
 
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.4 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΑ ΜΑΘΗΜΑΤΟΣ 1.4 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
 
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
 
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 ΜΑΘΗΜΑ 2.4
ΠΛΗ31 ΜΑΘΗΜΑ 2.4 ΠΛΗ31 ΜΑΘΗΜΑ 2.4
ΠΛΗ31 ΜΑΘΗΜΑ 2.4
 
ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4
ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4
ΠΛΗ31 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.4
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 ΚΑΡΤΕΣ (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΤΕΣΤ 3
ΠΛΗ10 ΤΕΣΤ 3ΠΛΗ10 ΤΕΣΤ 3
ΠΛΗ10 ΤΕΣΤ 3
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.2
 
PROLOG - ΜΑΘΗΜΑ 4
PROLOG - ΜΑΘΗΜΑ 4PROLOG - ΜΑΘΗΜΑ 4
PROLOG - ΜΑΘΗΜΑ 4
 
PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)
PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)
PROLOG - ΜΑΘΗΜΑ 4 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1
ΠΛΗ31 PROLOG ΜΑΘΗΜΑ 1
 
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1
ΠΛΗ10.ΚΑΡΤΑ ΜΑΘΗΜΑ 1.1
 
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΜΑΘΗΜΑ 1.1 ΚΑΡΤΑ (ΕΚΤΥΠΩΣΗ)
 

Similar to ΠΛΗ10 ΜΑΘΗΜΑ 1.3

ψηφιακά ηλεκτρονικά κεφ 1
ψηφιακά ηλεκτρονικά κεφ 1ψηφιακά ηλεκτρονικά κεφ 1
ψηφιακά ηλεκτρονικά κεφ 1Theodoros Leftheroudis
 
ΑΛΓΕΒΡΑ BOOLE
ΑΛΓΕΒΡΑ BOOLEΑΛΓΕΒΡΑ BOOLE
ΑΛΓΕΒΡΑ BOOLEmdaglis
 
ΠΛΗ31 ΜΑΘΗΜΑ 1.4
ΠΛΗ31 ΜΑΘΗΜΑ 1.4 ΠΛΗ31 ΜΑΘΗΜΑ 1.4
ΠΛΗ31 ΜΑΘΗΜΑ 1.4 Dimitris Psounis
 
3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdf
3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdf3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdf
3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdfFloraKara
 

Similar to ΠΛΗ10 ΜΑΘΗΜΑ 1.3 (6)

Λογικά Κυκλώματα - Ασκήσεις
Λογικά Κυκλώματα - ΑσκήσειςΛογικά Κυκλώματα - Ασκήσεις
Λογικά Κυκλώματα - Ασκήσεις
 
ψηφιακά ηλεκτρονικά κεφ 1
ψηφιακά ηλεκτρονικά κεφ 1ψηφιακά ηλεκτρονικά κεφ 1
ψηφιακά ηλεκτρονικά κεφ 1
 
ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33ΠΛΗ31 - ΤΕΣΤ 33
ΠΛΗ31 - ΤΕΣΤ 33
 
ΑΛΓΕΒΡΑ BOOLE
ΑΛΓΕΒΡΑ BOOLEΑΛΓΕΒΡΑ BOOLE
ΑΛΓΕΒΡΑ BOOLE
 
ΠΛΗ31 ΜΑΘΗΜΑ 1.4
ΠΛΗ31 ΜΑΘΗΜΑ 1.4 ΠΛΗ31 ΜΑΘΗΜΑ 1.4
ΠΛΗ31 ΜΑΘΗΜΑ 1.4
 
3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdf
3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdf3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdf
3η Διάλεξη - Άλγεβρα Boole και Λογικές Πύλες-Σημαντικο.pdf
 

More from Dimitris Psounis

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣDimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)Dimitris Psounis
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣDimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣDimitris Psounis
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Dimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CDimitris Psounis
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6Dimitris Psounis
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 Dimitris Psounis
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)Dimitris Psounis
 

More from Dimitris Psounis (20)

Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 4 - ΚΛΑΣΕΙΣ ΚΑΙ ΑΝΑΦΟΡΕΣ (4διαφ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ (4δ)
 
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 3 - ΚΛΑΣΕΙΣ ΚΑΙ ΔΕΙΚΤΕΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣΗ ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ
 
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
Η ΓΛΩΣΣΑ C++ - ΜΑΘΗΜΑ 2 - ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΚΛΑΣΕΙΣ (4 διαφ)
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ CC++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C
 
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
C++ - ΜΑΘΗΜΑ 1 - ΕΙΣΑΓΩΓΗ ΚΑΙ ΣΧΕΣΗ ΜΕ ΤΗ C (4sl/p)
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 6
 
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
ΠΛΗ20 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 5
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.2
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1 (ΕΚΤΥΠΩΣΗ)
 
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
ΠΛΗ10 ΚΑΡΤΕΣ ΜΑΘΗΜΑΤΟΣ 2.1
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 8
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 7 (ΕΚΤΥΠΩΣΗ)
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6
 
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΣΕ C - ΜΑΘΗΜΑ 6 (ΕΚΤΥΠΩΣΗ)
 

Recently uploaded

Χρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδα
Χρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδαΧρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδα
Χρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδαPenelope Markellou
 
Ο Μοναχισμός με τα έξι καπέλα σκέψης του Edward de Bono
Ο Μοναχισμός με τα έξι καπέλα σκέψης του  Edward de BonoΟ Μοναχισμός με τα έξι καπέλα σκέψης του  Edward de Bono
Ο Μοναχισμός με τα έξι καπέλα σκέψης του Edward de BonoΔήμητρα Τζίνου
 
A.2.1 παραγωγικοι συντελεστες.pptx sidiropo
A.2.1 παραγωγικοι συντελεστες.pptx sidiropoA.2.1 παραγωγικοι συντελεστες.pptx sidiropo
A.2.1 παραγωγικοι συντελεστες.pptx sidiroposidiropo
 
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptxΟ ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptxGeorgiaNianioglou
 
ΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptx
ΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptxΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptx
ΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptxPennyMarinaki
 
Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024
Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024
Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024ssuser6a63b0
 
ΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptx
ΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptxΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptx
ΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptxPennyMarinaki
 
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.grΕιδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.grEleniStergatou
 
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptx
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptxΗ σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptx
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptxΔήμητρα Τζίνου
 
Politistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptxPolitistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptx36dimperist
 
Sara_and_Jessica_Kolymvari_addiction.pptx
Sara_and_Jessica_Kolymvari_addiction.pptxSara_and_Jessica_Kolymvari_addiction.pptx
Sara_and_Jessica_Kolymvari_addiction.pptxPennyMarinaki
 
Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"
Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"
Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"LiaMitraga
 
Η ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6η
Η ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6ηΗ ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6η
Η ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6ηΕΥΗ ΚΑΡΟΥΝΙΑ
 
Τενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docx
Τενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docxΤενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docx
Τενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docxeucharis
 
Η Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.doc
Η Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.docΗ Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.doc
Η Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.doceucharis
 
Γιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptx
Γιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptxΓιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptx
Γιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptxPennyMarinaki
 
μυρτω ναξακη και ιωαννα λιονακη addiction.pptx
μυρτω ναξακη και ιωαννα λιονακη addiction.pptxμυρτω ναξακη και ιωαννα λιονακη addiction.pptx
μυρτω ναξακη και ιωαννα λιονακη addiction.pptxPennyMarinaki
 
ΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptx
ΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptxΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptx
ΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptxPennyMarinaki
 
Περιγραφή ανθρώπου: Ο φίλος μου/Η φίλη μου
Περιγραφή ανθρώπου: Ο φίλος μου/Η φίλη μουΠεριγραφή ανθρώπου: Ο φίλος μου/Η φίλη μου
Περιγραφή ανθρώπου: Ο φίλος μου/Η φίλη μουDimitra Mylonaki
 
erasmia πρόληψη και αντιμετώπιση του.pptx
erasmia πρόληψη και αντιμετώπιση του.pptxerasmia πρόληψη και αντιμετώπιση του.pptx
erasmia πρόληψη και αντιμετώπιση του.pptxPennyMarinaki
 

Recently uploaded (20)

Χρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδα
Χρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδαΧρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδα
Χρωμοσελίδα: Μετατροπή Avatar σε χρωμοσελίδα
 
Ο Μοναχισμός με τα έξι καπέλα σκέψης του Edward de Bono
Ο Μοναχισμός με τα έξι καπέλα σκέψης του  Edward de BonoΟ Μοναχισμός με τα έξι καπέλα σκέψης του  Edward de Bono
Ο Μοναχισμός με τα έξι καπέλα σκέψης του Edward de Bono
 
A.2.1 παραγωγικοι συντελεστες.pptx sidiropo
A.2.1 παραγωγικοι συντελεστες.pptx sidiropoA.2.1 παραγωγικοι συντελεστες.pptx sidiropo
A.2.1 παραγωγικοι συντελεστες.pptx sidiropo
 
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptxΟ ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
Ο ΜΑΡΚΟΣ ΜΠΟΤΣΑΡΗΣξ,ηωξηγξγφηξκξηκξηκξφκξηφ.pptx
 
ΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptx
ΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptxΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptx
ΝΙΚΟΛΕΤΑ ΣΚΟΡΔΥΛΗ ΓΙΑΝΝΗΣ ΓΙΩΡΓΟΣ ΤΣΕΡΚΑΚΗΣ2.pptx
 
Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024
Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024
Μαθητική Εμπορική Έκθεση Εικονικής Επιχείρησης 2024
 
ΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptx
ΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptxΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptx
ΆΝΤΖΕΛΑ ΚΟΤΙΚΑ ΚΑΙ ΆΝΙ ΑΜΑΤΙ αντιμετώπιση εθισμού .pptx
 
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.grΕιδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
Ειδικά θέματα διαχείρισης ιστολογίου στο blogs.sch.gr
 
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptx
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptxΗ σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptx
Η σύνθεση Χριστιανισμού και Ελληνισμού αποτυπώνεται στην τέχνη.pptx
 
Politistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptxPolitistiko_Idrima_Trapeza_Peiraios.pptx
Politistiko_Idrima_Trapeza_Peiraios.pptx
 
Sara_and_Jessica_Kolymvari_addiction.pptx
Sara_and_Jessica_Kolymvari_addiction.pptxSara_and_Jessica_Kolymvari_addiction.pptx
Sara_and_Jessica_Kolymvari_addiction.pptx
 
Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"
Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"
Εκπαιδευτικό Πρόγραμμα "Εβδομάδα Ιωάννη Καποδίστρια"
 
Η ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6η
Η ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6ηΗ ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6η
Η ΜΟΥΣΙΚΗ ΕΞΗΜΕΡΩΝΕΙ», ΑΡΧΑΙΑ Γ΄ΓΥΜΝΑΣΙΟΥ ,ΕΝΟΤΗΤΑ 6η
 
Τενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docx
Τενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docxΤενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docx
Τενεσί Ουίλιαμς - Αμερικανός θεατρικός συγγραφέας.docx
 
Η Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.doc
Η Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.docΗ Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.doc
Η Τουρκική εισβολή στην Κύπρο - Δεν ξεχνώ.doc
 
Γιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptx
Γιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptxΓιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptx
Γιάννης Μπαμποτσι Διαδικτυακός Εθισμός .pptx
 
μυρτω ναξακη και ιωαννα λιονακη addiction.pptx
μυρτω ναξακη και ιωαννα λιονακη addiction.pptxμυρτω ναξακη και ιωαννα λιονακη addiction.pptx
μυρτω ναξακη και ιωαννα λιονακη addiction.pptx
 
ΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptx
ΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptxΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptx
ΔΗΜΗΤΡΗΣ ΜΠΕΤΕΙΝΑΚΗΣ ΓΙΩΡΓΟΣ ΚΑΤΣΟΥΛΑΚΗΣ.pptx
 
Περιγραφή ανθρώπου: Ο φίλος μου/Η φίλη μου
Περιγραφή ανθρώπου: Ο φίλος μου/Η φίλη μουΠεριγραφή ανθρώπου: Ο φίλος μου/Η φίλη μου
Περιγραφή ανθρώπου: Ο φίλος μου/Η φίλη μου
 
erasmia πρόληψη και αντιμετώπιση του.pptx
erasmia πρόληψη και αντιμετώπιση του.pptxerasmia πρόληψη και αντιμετώπιση του.pptx
erasmia πρόληψη και αντιμετώπιση του.pptx
 

ΠΛΗ10 ΜΑΘΗΜΑ 1.3

  • 1. ΠΛΗ10 ΕΝΟΤΗΤΑ 1: Εισαγωγή στους Η/Υ Μάθηµα 1.3: Λογικές Πύλες ∆ηµήτρης Ψούνης
  • 2. A. Θεωρία 1. Εισαγωγή 1. Λογικά Κυκλώµατα και Λογικές Πύλες 2. Άλγεβρα Boole 3. Λογικές Συναρτήσεις 4. Πίνακες Αλήθειας 2. Λογικές Πύλες 1. Λογική Πύλη NOT 2. Λογική Πύλη OR 3. Λογική Πύλη AND 4. Λογική Πύλη NOR 5. Λογική Πύλη NAND 6. Λογική Πύλη XOR 7. Λογική Πύλη XNOR 2∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Περιεχόµενα Μαθήµατος 3. Μελέτη Κυκλωµάτων 1. Εισαγωγή 2. Από Λογική Συνάρτηση σε Αληθοπίνακα 3. Από Αληθοπίνακα σε Λογική Συνάρτηση 4. Από Αληθοπίνακα σε Κύκλωµα 5. Από Κύκλωµα σε Αληθοπίνακα 6. Από Κύκλωµα σε Λογική Συνάρτηση 7. Προβλήµατα και Κυκλώµατα
  • 3. A. Θεωρία 1. Εισαγωγή 1. Λογικά Κυκλώµατα και Λογικές Πύλες • Ο επεξεργαστής του υπολογιστή λειτουργεί µε λογικά κυκλώµατα τα οποία εκτελούν τους υπολογισµούς που θέτουµε µέσω των προγραµµάτων. • Τα απλούστερα λογικά κυκλώµατα που είναι και τα δοµικά στοιχεία που ορίζουν τον επεξεργαστή είναι οι λογικές πύλες. • Οι λογικές πύλες εκτελούν πολύ απλές πράξεις, αλλά συνθέτοντας τα σε λογικά κυκλώµατα µπορούµε να πραγµατοποιήσουµε πιο περίπλοκες πράξεις! • Στο µάθηµα αυτό θα µελετήσουµε τις λογικές πύλες και θα δούµε πως συνδυάζονται για να κατασκευάσουν λογικά κυκλώµατα. 3∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Πύλη NOT Πύλη AND Πύλη OR Πύλη XOR Πύλη NAND Πύλη NOR Πύλη XNOR
  • 4. A. Θεωρία 1. Εισαγωγή 2. Άλγεβρα Boole • Η άλγεβρα Boole είναι ένας κλάδος των µαθηµατικών που οι τιµές των µεταβλητών παίρνουν µόνο δύο τιµές: Αληθές (συµβολίζεται µε 1) και Ψευδές (συµβολίζεται µε 0) • Έπειτα ορίζονται και οι εξής πράξεις επί των µεταβλητών: • Λογικό ΚΑΙ που συµβολίζεται µε το σύνηθες σύµβολο του πολλαπλασιασµού ( ∙ ) • Λογικό ‘Η που συµβολίζεται µε το σύνηθες σύµβολο της πρόσθεσης ( ) • Λογικό ΌΧΙ (συµπλήρωµα) που συµβολίζεται µε έναν τόνο µετά το όνοµα της µεταβλητής • Και ορίζεται ότι η προτεραιότητα των πράξεων (αν αυτή δεν καθορίζεται µε παρενθέσεις) • Πρώτα το ΌΧΙ, µετά ο ΠΟΛ/ΜΟΣ (λογικό ΚΑΙ) και τέλος η ΠΡΟΣΘΕΣΗ (λογικό Ή) 4∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Οι βασικές πράξεις της άλγεβρας Boole είναι Πρόσθεση (x : Ισχύουν: 0 0 0 0 1 1 1 0 1 1 1 1 Συµπλήρωµα ( ′ : Ισχύουν: 0′ 1 1′ 0 Πολ/µος (x ∙ : Ισχύουν: 0 ∙ 0 0 0 ∙ 1 0 1 ∙ 0 0 1 ∙ 1 1 Μόνη διαφορά σε σχέση µε την άλγεβρα
  • 5. A. Θεωρία 1. Εισαγωγή 3. Λογικές Συναρτήσεις • Μία συνάρτηση που δέχεται ως ορίσµατα λογικές µεταβλητές κάνει έναν υπολογισµό της άλγεβρας Boole και επιστρέφει 0 ή 1 καλείται λογική συνάρτηση. 5∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Παράδειγµα: Η ακόλουθη λογική συνάρτηση εκτελεί µία σειρά από λογικές πράξεις στα ορίσµατά της: , , ′ Και έτσι για παράδειγµα αν το X=1, το Y=0 και το Ζ=1 η επιστρεφόµενη τιµή της συνάρτησης θα είναι: 1,0,1 1 ∙ 0 1 0 0 0 Παρατήρηση: Κάθε λογικό κύκλωµα θα υλοποιεί µία λογική συνάρτηση. ορίσµατα Σώµα συνάρτησης Παρατήρηση: Η προτεραιότητα των πράξεων είναι σηµαντικό να είναι ενστικτώδες κτήµα µας. π.χ εδώ ισχύει ότι η προτεραιότητα είναι: (πρώτα συµπλήρωµα, έπειτα πολ/µος, έπειτα πρόσθεση)
  • 6. A. Θεωρία 1. Εισαγωγή 4. Πίνακες Αλήθειας • Καθότι µια λογική συνάρτηση µπορεί να πάρει συγκεκριµένο πλήθος τιµών (όχι άπειρο), ο πίνακας αλήθειας χρησιµοποιείται για να παρουσιάσει την έξοδο της συνάρτησης για κάθε συνδυασµό εισόδων 6∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Παράδειγµα 2: Ο πίνακας αλήθειας της συνάρτησης: , , ′ Παράδειγµα 1: Ο πίνακας αλήθειας της , ′ Υ′ είναι: Υ , 0 0 1 0 1 1 1 0 1 1 1 0 Υ Ζ , , 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1
  • 7. A. Θεωρία 2. Λογικές Πύλες 1. Λογική Πύλη NOT H Λογική Πύλη NOT (λογική πύλη ΌΧΙ) δέχεται µία είσοδο και παράγει στην έξοδο το αντίστροφο της εισόδου. • Καλείται και πύλη αντιστροφέας 7∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Σύµβολο: X Έξοδος 0 1 1 0 Πίνακας Αλήθειας: Χ΄ ή NOT Χ Λογική Συνάρτηση:
  • 8. A. Θεωρία 2. Λογικές Πύλες 2. Λογική Πύλη OR H Λογική Πύλη OR δέχεται δύο εισόδους και παράγει στην έξοδο το λογικό Ή των εισόδων της. 8∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες , Υ Χ Υ ή , Υ X OR Y , Υ Εµπειρικά: Αν τουλάχιστον µία από τις εισόδους είναι 1, τότε η έξοδος είναι 1. Αν και οι δύο είσοδοι είναι 0, τότε µόνο η έξοδος είναι 0. Υ Υ , 0 0 0 0 1 1 1 0 1 1 1 1 Σύµβολο: Πίνακας Αλήθειας: Λογική Συνάρτηση:
  • 9. A. Θεωρία 2. Λογικές Πύλες 3. Λογική Πύλη AND H Λογική Πύλη AND δέχεται δύο εισόδους και παράγει στην έξοδο το λογικό KAI των εισόδων της. 9∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες , Υ Χ ∙ Υ ή , Υ X AND Y , Υ Εµπειρικά: Αν τουλάχιστον µία από τις εισόδους είναι 0, τότε η έξοδος είναι 0. Αν και οι δύο είσοδοι είναι 1, τότε µόνο η έξοδος είναι 1. Υ Υ , 0 0 0 0 1 0 1 0 0 1 1 1 Σύµβολο: Πίνακας Αλήθειας: Λογική Συνάρτηση:
  • 10. A. Θεωρία 2. Λογικές Πύλες 4. Λογική Πύλη NOR H Λογική Πύλη NOR δέχεται δύο εισόδους και παράγει στην έξοδο το αντίστροφο του λογικού Ή των εισόδων της. 10∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες , Υ Χ Υ ′ ή , Υ X ΝOR Y , Υ Εµπειρικά: Υπολογίζουµε το OR και παίρνουµε το αντίστροφο. Υ Υ , 0 0 1 0 1 0 1 0 0 1 1 0 Σύµβολο: Πίνακας Αλήθειας: Λογική Συνάρτηση: Παρατήρηση: Το NOR δεν είναι βασική πράξη διότι µπορεί να υπολογιστεί µέσω του NOT και του OR: , Υ Χ Υ ΝΟΤ Χ OR Y
  • 11. A. Θεωρία 2. Λογικές Πύλες 5. Λογική Πύλη NAND H Λογική Πύλη NAND δέχεται δύο εισόδους και παράγει στην έξοδο το αντίστροφο του λογικού KAI των εισόδων της. 11∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες , Υ ΧΥ ′ ή , Υ X ΝAND Y , Υ Εµπειρικά: Υπολογίζουµε το AND και παίρνουµε το αντίστροφο. Υ Υ , 0 0 1 0 1 1 1 0 1 1 1 0 Σύµβολο: Πίνακας Αλήθειας: Λογική Συνάρτηση: Παρατήρηση: Το NAND δεν είναι βασική πράξη διότι µπορεί να υπολογιστεί µέσω του NOT και του AND: , Υ ΧΥ ΝΟΤ Χ AND Y
  • 12. A. Θεωρία 2. Λογικές Πύλες 6. Λογική Πύλη XOR H Λογική Πύλη XOR (exclusive OR – αποκλειστικό Ή) δέχεται δύο εισόδους και παράγει 1 αν οι δύο είσοδοι είναι διαφορετικές. Αλλιώς παράγει 0. 12∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες , Υ Χ ⊕ Υ ή , Υ X XOR Y , Υ Εµπειρικά: Παράγει 1 όταν οι είσοδοι είναι διαφορετικές και 0 αν οι είσοδοι είναι ίδιες Υ Υ , 0 0 0 0 1 1 1 0 1 1 1 0 Σύµβολο: Πίνακας Αλήθειας: Λογική Συνάρτηση: Παρατήρηση: Το XOR δεν είναι βασική πράξη διότι µπορεί να υπολογιστεί µέσω των βασικών πυλών NOT κ AND , Υ Χ ⊕ Υ XY X Y
  • 13. A. Θεωρία 2. Λογικές Πύλες 7. Λογική Πύλη XΝOR H Λογική Πύλη XΝOR δέχεται δύο εισόδους και παράγει 1 αν οι δύο είσοδοι είναι ίδιες. Αλλιώς παράγει 1. 13∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες , Υ Χ ⊕ Υ ′ ή , Υ X XNOR Y , Υ Εµπειρικά: Παράγει 1 όταν οι είσοδοι είναι ίδιες και 0 αν οι είσοδοι είναι διαφορετικές Υ Υ , 0 0 1 0 1 0 1 0 0 1 1 1 Σύµβολο: Πίνακας Αλήθειας: Λογική Συνάρτηση: Παρατήρηση: Το XNOR επίσης δεν είναι βασική πράξη διότι µπορεί να υπολογιστεί µέσω των βασικών πυλών NOT κ AND , Υ Χ ⊕ Υ ′ XY X Y ′
  • 14. Παράδειγµα: Το ακόλουθο λογικό κύκλωµα αποτελεί τον περίφηµο αθροιστή. ∆έχεται δύο εισόδους (Χ και Υ) και παράγει δύο εξόδους (το αποτέλεσµα (D) και το κρατούµενο (Β) ) Α. Θεωρία 3. Μελέτη Κυκλωµάτων 1. Εισαγωγή Ένα Λογικό Κύκλωµα χρησιµοποιεί κατάλληλη συνδεσµολογία των λογικών πυλών ώστε να υλοποιήσει µια λογική συνάρτηση που επιτελεί µια συγκεκριµένη ενέργεια. 14∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Αποτέλεσµα: # X ⊕ Y Κρατούµενο: $ ΧΥ Το κύκλωµα θα προδιαγράφεται πλήρως µέσω του διαγράµµατός του, του πίνακα αλήθειας και της λογικής συνάρτησης του. Υ Β # 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 ∆ιάγραµµα: Πίνακας Αλήθειας: Λογική Συνάρτηση: Χ Υ D Β
  • 15. 15∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Ζητείται η άριστη κατανόηση των 3 δοµικών στοιχείων του λογικού κυκλώµατος (διάγραµµα, πίνακας αλήθειας, λογική συνάρτηση) καθώς και δεδοµένου ενός από αυτά, να κατασκευάσουµε οποιοδήποτε από τα άλλα, δηλαδή: 1. ∆ίδεται Λογική Συνάρτηση και ζητείται Αληθοπίνακας 2. ∆ίδεται Λογική Συνάρτηση και ζητείται το λογικό κύκλωµα 3. ∆ίδεται Αληθοπίνακας και ζητείται Λογική Συνάρτηση 4. ∆ίδεται Αληθοπίνακας και ζητείται Λογικό Κύκλωµα 5. ∆ίδεται Λογικό Κύκλωµα και ζητείται Αληθοπίνακας 6. ∆ίδεται Λογικό Κύκλωµα και ζητείται Λογική Συνάρτηση Α. Θεωρία 3. Μελέτη Κυκλωµάτων 1. Εισαγωγή
  • 16. Παράδειγµα: Να κατασκευάσετε τον αληθοπίνακα της συνάρτησης: Z ′ ′ Λύση: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 2. Από Λογική Συνάρτηση σε Αληθοπίνακα 16∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες ∆ίνεται η λογική συνάρτηση και ζητείται ο αληθοπίνακας. • Τότε το βασικό εργαλείο είναι η άλγεβρα Boole (όπου σε κάθε γραµµή του αληθοπίνακα πρέπει απλά να κάνουµε τις απαραίτητες πράξεις αντικαθιστώντας τις τιµές των µεταβλητών στη λογική συνάρτηση) Υ Z 0 0 1 0 1 0 1 0 1 1 1 0 Πρόχειρο: Υ 0 0 0 1 1 0 1 1 0 ∙ 0 0 ∙ 0 0 ∙ 1 1 ∙ 1 0 1 1 0 ∙ 1 0 ∙ 1 0 ∙ 0 1 ∙ 0 0 0 0 1 ∙ 0 1 ∙ 0 1 ∙ 1 0 ∙ 1 1 0 1 1 ∙ 1 1 ∙ 1 1 ∙ 0 0 ∙ 0 0 0 0
  • 17. Παράδειγµα: Να κατασκευάσετε τον αληθοπίνακα της συνάρτησης: Z '( )*# )*# *'+ Λύση: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 2. Από Λογική Συνάρτηση σε Αληθοπίνακα 17∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες ∆ίνεται η λογική συνάρτηση και και ζητείται ο αληθοπίνακας. Μετά από πολλή εξάσκηση µε παραδείγµατα θα γίνουν τα εξής: • Μνηµονικά τα NOT, OR, AND, XOR • Τα NOR, NAND, XNOR είναι το αντίθετο των αντιστοίχων πυλών • Κατασκευάζουµε βοηθητικές στήλες για «ενδιάµεσα» αποτελέσµατα. Υ K Χ XOR Y L NOT Y . )*# / 0 )*# . 0 0 0 1 0 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0
  • 18. 18∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Άσκηση: Να κατασκευαστεί ο αληθοπίνακας της ακόλουθης λογικής συνάρτησης: Z ′ ′ Α. Θεωρία 3. Μελέτη Κυκλωµάτων 2. Από Λογική Συνάρτηση σε Αληθοπίνακα
  • 19. Παράδειγµα: ∆ίνεται η συνάρτηση: AB’+AC. Να κατασκευάσετε το ισοδύναµο λογικό κύκλωµα. Λύση: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 3. Από Λογική Συνάρτηση σε Κύκλωµα 19∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες ∆ίνεται η λογική συνάρτηση και ζητείται το διάγραµµα του κυκλώµατος. • Τότε µε βάση την προτεραιότητα των λογικών πράξεων κατασκευάζουµε το διάγραµµα από «µέσα» προς τα «έξω» δηλαδή σχεδιάζουµε τις πύλες µε προτεραιότητα όπως και η προτεραιότητα των πράξεων της συνάρτησης. Πρόχειρο: (A(B’))+(AC)A Β C
  • 20. 20∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Άσκηση: Να κατασκευαστεί το κύκλωµα της ακόλουθης λογικής συνάρτησης: Z NOT Χ XOR Y '( *'+ )*# *'+ )*# '( )*# )*# Α. Θεωρία 3. Μελέτη Κυκλωµάτων 2. Από Λογική Συνάρτηση σε Κύκλωµα
  • 21. Παράδειγµα: ∆ίνεται ο ακόλουθος πίνακας αλήθειας. Να δώσετε την αντίστοιχη λογική συνάρτηση. Α. Θεωρία 3. Μελέτη Κυκλωµάτων 4. Από Αληθοπίνακα σε Λογική Συνάρτηση 21∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες ∆ίνεται ο Αληθοπίνακας και ζητείται η Λογική Συνάρτηση. • Πρώτα εντοπίζουµε τις γραµµές που η συνάρτηση έχει τιµή 1. • Για κάθε τέτοια γραµµή γράφουµε ένα γινόµενο όλων των µεταβλητών: • Αν η τιµή της µεταβλητής είναι 1, τότε γράφουµε το όνοµα της µεταβλητής • Αν η τιµή της µεταβλητής είναι 0, τότε γράφουµε το συµπλήρωµα της µεταβλητής • Το αποτέλεσµα είναι το άθροισµα αυτών των γινοµένων. Υ Ζ 1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 Λύση: Έχουµε F=1 όταν: • 0, Υ 0, Ζ 0 • 0, Υ 1, Ζ 0 • 1, Υ 0, Ζ 0 • 1, Υ 1 Ζ 0 • 1, Υ 1, Ζ 1 Άρα η συνάρτηση είναι: 2
  • 22. 22∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Άσκηση: Να κατασκευαστεί η λογική συνάρτηση για τον ακόλουθο αληθοπίνακα: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 4. Από Αληθοπίνακα σε Λογική Συνάρτηση Υ Ζ 3 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1
  • 23. Παράδειγµα: ∆ίνεται ο ακόλουθος πίνακας αλήθειας. Να δώσετε το αντίστοιχο λογικό κύκλωµα. Α. Θεωρία 3. Μελέτη Κυκλωµάτων 5. Από Αληθοπίνακα σε Κύκλωµα 23∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες ∆ίνεται ο Αληθοπίνακας και ζητείται το Κύκλωµα. • Πρώτα βρίσκουµε τη λογική συνάρτηση (όπως στα προηγούµενα) • Έπειτα µετατρέπουµε τη λογική συνάρτηση σε κύκλωµα (όπως στα προηγούµενα) Υ Ζ 1 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 Λύση: Η λογική συνάρτηση είναι: 1 4 5 6 4 56 456 Υ Ζ 1
  • 24. 24∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Άσκηση: Να κατασκευαστεί το λογικό κύκλωµα για τον ακόλουθο αληθοπίνακα: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 5. Από Αληθοπίνακα σε Λογικό Κύκλωµα Υ Ζ 3 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0
  • 25. Παράδειγµα: Να κατασκευάσετε τον αληθοπίνακα του ακόλουθου λογικού κυκλώµατος. Α. Θεωρία 3. Μελέτη Κυκλωµάτων 6. Από Κύκλωµα σε Αληθοπίνακα 25∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες ∆ίνεται το κύκλωµα και ζητείται ο αληθοπίνακας. • Βάζουµε ονόµατα στις ενδιάµεσες πύλες • Υπολογίζουµε την έξοδο των λογικών πυλών «προς τα εµπρός» κατασκευάζοντας µία στήλη για κάθε πύλη A Β C F K L ) $ 7 K A XOR B L A NAND C F K OR L 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 0 Λύση:
  • 26. 26∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Άσκηση: Να κατασκευαστεί ο αληθοπίνακας του λογικού κυκλώµατος: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 6. Από Κύκλωµα σε Αληθοπίνακα A Β C F
  • 27. Παράδειγµα: Να κατασκευάσετε τη λογική συνάρτηση του ακόλουθου λογικού κυκλώµατος. Α. Θεωρία 3. Μελέτη Κυκλωµάτων 7. Από Κύκλωµα σε Αληθοπίνακα 27∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες ∆ίνεται το κύκλωµα και ζητείται η λογική συνάρτηση. • Βάζουµε ονόµατα στις ενδιάµεσες πύλες • Καταγράφουµε τις λογικές πύλες «προς τα πίσω» καταγράφοντας το ισοδύναµό τους στην άλγεβρα Boole A Β C F K L Λύση: D M N 2 ; '( / 2 Α ΧΟ( $ '( = 2 Α ΧΟ( $ '( ) )*# . )*# * 2 Α ΧΟ( $ '( ) )*# *'+ 7 )*# > 2 Α ΧΟ( $ '( ) )*# *'+ 7 )*# 7 '( # 0 ) '( $ / ) )*# . )*# * . *'+ 7 * 7 '( #
  • 28. 28∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Άσκηση: Να κατασκευαστεί η λογική συνάρτηση του λογικού κυκλώµατος: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 7. Από Κύκλωµα σε Λογική Συνάρτηση A Β C F
  • 29. Παράδειγµα: Να κατασκευάσετε κύκλωµα που παίρνει ως είσοδο έναν τριψήφιο δυαδικό αριθµό και επιστρέφει 1 αν ο αριθµός είναι περιττός (µονός) και 0 αν ο αριθµός είναι άρτιος (ζυγός). Λύση: Έστω XYZ o δυαδικός αριθµός. Ο πίνακας αλήθειας είναι ο ακόλουθος (αφού οι περιττοί αριθµοί είναι: (001=1, 011=3, 101=5,111=7) Α. Θεωρία 3. Μελέτη Κυκλωµάτων 8. Προβλήµατα και Κυκλώµατα 29∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Η γοητεία των κυκλωµάτων είναι ότι µπορούν να µοντελοποιήσουν περίπλοκα προβλήµατα του πραγµατικού κόσµου χρησιµοποιώντας µαθηµατική λογική αλήθειας - ψέµατος. • Εντοπίζουµε τις µεταβλητές του προβλήµατος (που θα είναι δυαδικές µεταβλητές) και έπειτα κατασκευάζουµε τον πίνακα αλήθειας που µοντελοποιεί το πρόβληµα. • Ακολουθεί η κατασκευή του κυκλώµατος σύµφωνα µε αυτά που µάθαµε. Υ Ζ 1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 Έχουµε 2 1 όταν: • Χ 0, Υ 0, Ζ 1 • Χ 0, Υ 1, Ζ 1 • Χ 1, Υ 0, Ζ 1 • Χ 1, Υ 1, Ζ 1 Άρα η λογική συνάρτηση είναι: F X Y Z X YZ XY Z ΧΥZ
  • 30. και το κύκλωµα που αντιστοιχεί στην λογική συνάρτηση: είναι το ακόλουθο: Α. Θεωρία 3. Μελέτη Κυκλωµάτων 8. Προβλήµατα και Κυκλώµατα 30∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες F X Y Z X YZ XY Z ΧΥZ Υ Ζ 1
  • 31. 31∆ηµήτρης Ψούνης, ΠΛΗ 10, Μάθηµα 1.3: Λογικές Πύλες Άσκηση: Να κατασκευάσετε κύκλωµα που παίρνει ως είσοδο έναν τριψήφιο δυαδικό αριθµό και επιστρέφει 1 αν ο αριθµός είναι πρώτος [Σηµείωση: Ενας αριθµός είναι πρώτος αν διαιρείται µόνο µε τον εαυτό του και τη µονάδα. Επίσης το θεωρείται ότι το 1 δεν είναι πρώτος αριθµός]. Α. Θεωρία 3. Μελέτη Κυκλωµάτων 8. Προβλήµατα και Κυκλώµατα