Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

DSD-INT 2019 A new hydrological modelling framework for the Rhine - van Osnabrugge

85 views

Published on

Presentation by Bart van Osnabrugge, Wageningen University and Deltares, at the wflow - User Day (Developments in distributed hydrological modelling), during Delft Software Days - Edition 2019. Friday, 08 November 2019, Delft.

Published in: Software
  • Be the first to comment

  • Be the first to like this

DSD-INT 2019 A new hydrological modelling framework for the Rhine - van Osnabrugge

  1. 1. IMPREX: Towards a new hydrological model for operational and policy use in the Rhine area B a r t v a n O s n a b r u g g e , M a r k H e g n a u e r R u b e n I m h o f f , M a a r t e n S m o o r e n b u r g , Wi l l e m v a n Ve r s e v e l d , H é l è n e B o i s g o n t i e r, D i r k E i l a n d e r, P i e t e r H a z e n b e r g , A l b r e c h t We e r t s D e l t a r e s , w f l o w U s e r D a y, 8 N o v e m b e r 2 0 1 9
  2. 2. Funded under the Horizon 2020 Framework Programme of the European Union Grant Agreement No 641811 www.imprex.eu 2
  3. 3. Contents • Why a new model? • Some scientific context? • wflow: reminder • Transition of the Rhine model to wflow • wflow for the Rhine: opportunities • wflow_sbm: THE new model concept for future use? • Design principles • Results for the Rhine river • Questions 3
  4. 4. IMPREX: Towards a new hydrological model for operational and policy use in the Rhine area Part 1: Why and scientific context B a r t v a n O s n a b r u g g e , M a r k H e g n a u e r R u b e n I m h o f f , M a a r t e n S m o o r e n b u r g , Wi l l e m v a n Ve r s e v e l d , H é l è n e B o i s g o n t i e r, D i r k E i l a n d e r, P i e t e r H a z e n b e r g , A l b r e c h t We e r t s D e l t a r e s , w f l o w U s e r D a y, 8 N o v e m b e r 2 0 1 9
  5. 5. Why a new model? • Spatial (satellite) information • Interfaces • OpenDA • Delft-FEWS … • Transparency • Flexibility • Fixed routines for i.e. evaporation • Spagetti of corrections • No further development • Maintainence impossible
  6. 6. Science context Hydrologisch modelleren • Proces based modelling • Distributed modelling • Community hydrological model • Global modelling 6 • Ensembles • Data assimilation • Uncertainty and Reliability • Practical requirements Hydrologisch voorspellen
  7. 7. Science context Hydrological modelling • Proces based modelling • Distributed modelling • Community hydrological model • Global modelling 7 Clark, Martyn P., et al. "A unified approach for process‐based hydrologic modeling: 1. Modeling concept." Water Resources Research 51.4 (2015): 2498-2514.
  8. 8. Science context Hydrological modelling • Proces based modelling 8 Clark, Martyn P., et al. "A unified approach for process‐based hydrologic modeling: 1. Modeling concept." Water Resources Research 51.4 (2015): 2498-2514. Model concept: specific combination of hydrological processes and mathematical description thereof, as hypothesis of reality
  9. 9. Science context Hydrological modelling • Proces gericht modelleren 9 Clark, Martyn P., et al. "A unified approach for process‐based hydrologic modeling: 1. Modeling concept." Water Resources Research 51.4 (2015): 2498-2514. Model concept: specifieke combinatie van hydrologische processen en formulering daarvan, als hypothese van de werkelijkheid Model framework: Software to build and run models (programming language, numerical solvers, interfaces, input, output, etc.)
  10. 10. Science context Hydrological modelling • Proces based modelling • Distributed modelling • Community hydrological model • Global modelling 10 Melsen, Lieke, et al. "Representation of spatial and temporal variability in large-domain hydrological models: case study for a mesoscale pre-Alpine basin." Hydrology and Earth System Sciences 20.6 (2016): 2207-2226. Temporal resolution Spatial resolution
  11. 11. Science context Hydrological modelling • Proces based modelling • Distributed modelling • Community hydrological model • Global modelling 11 Take a look at eWaterCycle https://www.ewatercycle.org/Landscape.html https://xkcd.com/927/
  12. 12. Science context Hydrological modelling • Proces based modelling • Distributed modelling • Community hydrological model • Global modelling 12 Bierkens, Marc FP. "Global hydrology 2015: State, trends, and directions." Water Resources Research 51.7 (2015): 4923-4947.
  13. 13. Science context Hydrological forecasting • Ensembles • Data assimilation • Uncertainty and Reliability • Practical Requirements 13 Cloke, H. L., and Florian Pappenberger. "Ensemble flood forecasting: A review." Journal of hydrology 375.3-4 (2009): 613-626. HEPEX: https://hepex.irstea.fr
  14. 14. Science context Hydrological forecasting • Ensembles • Data assimilation • Uncertainty and Reliability • Practical Requirements 14 Rakovec, O., et al. "Operational aspects of asynchronous filtering for flood forecasting." Hydrology and Earth System Sciences 19.6 (2015): 2911-2924.
  15. 15. Science context Hydrological forecasting • Ensembles • Data assimilation • Uncertainty and Reliability • Practical Requirements 15 Crochemore, L., Photiadou, C., Cantone, C., Pechlivanidis, I. (SMHI) “Call For Water” Serious Game. Zie ook: Crochemore, Louise, et al. "An experiment on risk-based decision-making in water management using monthly probabilistic forecasts." Bulletin of the American Meteorological Society 97.4 (2016): 541-551.
  16. 16. Science context Hydrological forecasting • Ensembles • Data assimilation • Uncertainty and Reliability • Practical Requirements 16 Crochemore, L., Photiadou, C., Cantone, C., Pechlivanidis, I. (SMHI) “Call For Water” Serious Game. Zie ook: Crochemore, Louise, et al. "An experiment on risk-based decision-making in water management using monthly probabilistic forecasts." Bulletin of the American Meteorological Society 97.4 (2016): 541-551.
  17. 17. Science context Hydrological forecasting • Ensembles • Data assimilation • Uncertainty and Reliability • Practical Requirements 17 Crochemore, L., Photiadou, C., Cantone, C., Pechlivanidis, I. (SMHI) “Call For Water” Serious Game. Zie ook: Crochemore, Louise, et al. "An experiment on risk-based decision-making in water management using monthly probabilistic forecasts." Bulletin of the American Meteorological Society 97.4 (2016): 541-551.
  18. 18. Science context Hydrological forecasting • Ensembles • Data assimilation • Uncertainty and Reliability • Practical Requirements 18 Kauffeldt, Anna, et al. "Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level." Environmental Modelling & Software 75 (2016): 68-76. • Availability of code • User community • Input requirements • Flexibility to grid structure • Possibility of calibration • Flexibility in resolution • Facility to introduce discharge observation stations • Pan-European model set up?
  19. 19. wflow framework 19 Model concepts Hydrological processess wflow_hbv wflow_w3ra wflow_topoFlex wflow_sbm Glaciers Lakes Evaporation Kinematic wave Model information Parameter maps Parameter table Forcing Interfaces OpenDA Delft-FEWS MODFLOW https://github.com/openstreams/wflow pcraster
  20. 20. HBV in wflow: wflow_hbv 20 wflow framework Model concepts Process / Module library Glaciers Lakes Evaporation Kinematic wave Model information Parameter maps Parameter table Forcing interfaces OpenDA Delft-FEWS hyMod https://github.com/openstreams/wflow wflow_hbv pcraster
  21. 21. wflow_sbm: model voor de toekomst ? 21 wflow framework Model concepts Process / Module library Glaciers Lakes Evaporation Kinematic wave Model information Parameter maps Parameter table Forcing interfaces OpenDA Delft-FEWS hyMod https://github.com/openstreams/wflow pcraster wflow_sbm
  22. 22. IMPREX: Towards a new hydrological model for operational and policy use in the Rhine area Part 2: experiments with wflow_hbv B a r t v a n O s n a b r u g g e , M a r k H e g n a u e r R u b e n I m h o f f , M a a r t e n S m o o r e n b u r g , Wi l l e m v a n Ve r s e v e l d , H é l è n e B o i s g o n t i e r, D i r k E i l a n d e r, P i e t e r H a z e n b e r g , A l b r e c h t We e r t s D e l t a r e s , w f l o w U s e r D a y, 8 N o v e m b e r 2 0 1 9
  23. 23. Translation Rijn model to wflow Patchwork of model parameters • Direct transition of HBV96 parameters to wflow_hbv • Almost exact replication of old model results 23
  24. 24. Experiments with wflow_hbv Improved spatial interpolation of precipitation 24 van Osnabrugge, B., A. H. Weerts, and R. Uijlenhoet. "genRE: A Method to Extend Gridded Precipitation Climatology Data Sets in Near Real‐Time for Hydrological Forecasting Purposes." Water Resources Research 53.11 (2017): 9284-9303.
  25. 25. Experiments with wflow_hbv Hourly and gridded (1.2kmx1.2km) forcings dataset 25 van Osnabrugge, B. (Bart) (2017) Gridded precipitation dataset for the Rhine basin made with the genRE interpolation method. Deltares. Dataset. https://doi.org/10.4121/uuid:c875b385-ef6d-45a5-a6d3-d5fe5e3f525d van Osnabrugge, B. (Bart) (2018) Gridded Hourly Temperature, Radiation and Makkink Potential Evaporation forcing for hydrological modelling in the Rhine basin. Wageningen University & Research. Dataset. https://doi.org/10.4121/uuid:e036030f- c73b-4e7b-9bd4-eebc899b5a13
  26. 26. Experiments with wflow_hbv (Potential)Evaporation from satellite information 26 • Spatial calculation of PET • The influence of PET on discharge forecast is always secondary to precipitation • Better low-flow forecasts? -> Not solved by nrt simulation of evaporation drivers van Osnabrugge, B., R. Uijlenhoet, and A. Weerts. "Contribution of potential evaporation forecasts to 10-day streamflow forecast skill for the Rhine River." Hydrology and Earth System Sciences 23.3 (2019): 1453-1467.
  27. 27. Experiments with wflow_hbv Data assimilation of discharge 27
  28. 28. Experiments with wflow_hbv Data assimilation of lake level of Swiss lakes 28 2 1 8 6 5 4 3 7 van Osnabrugge, B., et al. “Assimilation of multiple lake levels in an operational integrated catchment model of the Swiss Rhine basin." Journal of Hydrology (Manuscript, submitted) .
  29. 29. Experiments with wflow_hbv 29 2 1 8 6 5 4 3 7 van Osnabrugge, B., et al. “Assimilation of multiple lake levels in an operational integrated catchment model of the Swiss Rhine basin." Journal of Hydrology (Manuscript, planned late 2019) . Data assimilation of lake level of Swiss lakes
  30. 30. IMPREX: Towards a new hydrological model for operational and policy use in the Rhine area Part 3: wflow_sbm: model concept for future modelling? B a r t v a n O s n a b r u g g e , M a r k H e g n a u e r R u b e n I m h o f f , M a a r t e n S m o o r e n b u r g , Wi l l e m v a n Ve r s e v e l d , H é l è n e B o i s g o n t i e r, D i r k E i l a n d e r, P i e t e r H a z e n b e r g , A l b r e c h t We e r t s D e l t a r e s , w f l o w U s e r D a y, 8 N o v e m b e r 2 0 1 9
  31. 31. wflow framework 31 Wflow framework Model concepts Process / Module library wflow_hbv wflow_w3ra wflow_topoFlex wflow_sbm Glaciers Lakes Evaporation Kinematic wave Model information Parameter maps Parameter table Forcing Interface OpenDA Delft-FEWS hyMod https://github.com/openstreams/wflow pcraster
  32. 32. wflow_sbm: future model concept? Design principles • Conceptual model concept • Minimal calibration • Multi-Resolution 32 https://wflow.readthedocs.io/en/latest/wflow_sbm.html
  33. 33. wflow_sbm: future model concept? Design principles • Conceptual model concept • Minimal calibration • Multi-Resolution 33 Pedotransferfunction
  34. 34. wflow_sbm: future model concept? Design principles • Conceptual model concept • Minimal calibration • Multi-Resolution 34 Imhoff, R. et al., water resources research, 2019. (in revision)
  35. 35. wflow_sbm: future model concept? Design principles • Conceptual model concept • Minimal calibration • Multi-Resolution 35 Samaniego, Luis, Rohini Kumar, and Sabine Attinger. "Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale." Water Resources Research 46.5 (2010).
  36. 36. wflow_sbm: future model concept? Results: Multiscale Parameter Regionalisation 36 Imhoff, R. et al., water resources research, 2019. (in revision)
  37. 37. wflow_sbm: future model concept? Results: Multi-scale preservation of fluxes 37 Imhoff, R. et al., water resources research, 2019. (in revision)
  38. 38. wflow_sbm: future model concept? Results: Multi-scale preservation of fluxes 38 Imhoff, R. et al., water resources research, 2019. (in revision)
  39. 39. wflow_sbm: future model concept? Results: KGE scores for discharge 39 • Not conditioned on forcing or observations • Asking the right questions: • Precipitation ok? • Routing? • Governing processes? • Where should we measure? • What if….. ? Imhoff, R. et al., water resources research, 2019. (in revision)
  40. 40. IMPREX Legacy 4 • wflow_hbv • wflow_hbv ready to replace hbv96 in RWSOS • wflow_hbv with data assimilation improves forecasts • wflow_sbm • wflow_sbm ready for extensive testing • Tests ongoing with openDA • Improved scaling of the river network • A calibrated version • Global model available • wflow framework • Development ongoing • Interested partners?
  41. 41. Part 4: Questions B a r t v a n O s n a b r u g g e , M a r k H e g n a u e r R u b e n I m h o f f , M a a r t e n S m o o r e n b u r g , Wi l l e m v a n Ve r s e v e l d , H é l è n e B o i s g o n t i e r, D i r k E i l a n d e r, P i e t e r H a z e n b e r g , A l b r e c h t We e r t s D e l t a r e s , w f l o w U s e r D a y, 8 N o v e m b e r 2 0 1 9
  42. 42. www.imprex.eu Contact details Deltares Bart van Osnabrugge Bart.vanOsnabrugge@Deltares.nl Albrecht Weerts Albrecht.Weerts@deltares.nl Acknowledgement IMPREX is a research project supported by the European Commission under the Horizon 2020 Framework Programme Grant Agreement No 641811 Duration: 01/10/15 - 01/10/19

×