Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

DSD-INT 2018 Modelling vegetation life stages for realistic saltmarsh development - Bruckner

59 views

Published on

Presentation by Muriel Bruckner, Utrecht University, The Netherlands, at the Delft3D - User Days (Day 4: Water quality and ecology), during Delft Software Days - Edition 2018. Thursday, 15 November 2018, Delft.

Published in: Software
  • Be the first to comment

  • Be the first to like this

DSD-INT 2018 Modelling vegetation life stages for realistic saltmarsh development - Bruckner

  1. 1. Faculty of Geosciences River and delta morphodynamics MODELLING VEGETATION LIFE STAGES FOR REALISTIC SALTMARSH DEVELOPMENT M.Z.M Brückner *, C. Schwarz, W.M. van Dijk, M. van Oorschot, H. Douma and M.G. Kleinhans * m.z.m.bruckner@uu.nl
  2. 2. Plants and morphology How do plants shape estuaries? 2
  3. 3. Flow alteration at the plant 3 Eco-engineering at larger scale?
  4. 4. Vegetation modelling up to now 1) Roughness of vegetation > bottom roughness 2) Vegetation grows relative to MHW – static modeling 3) BUT flow field has NO effect on vegetation How can we model vegetation to capture the eco- engineering effects on plants? 4 𝐶 = 1 1 𝐶 𝑏 2 + 𝐶 𝐷 𝑛ℎ 𝑣 2𝑔 + 𝑔 к ln( ℎ ℎ 𝑣 ) (Baptist, 2005)
  5. 5. Dynamic model: Modified from Van Oorschot et al., 2015Delft3D Matlab 5
  6. 6. River model with dynamic plants 6 Van Oorschot et al., 2015
  7. 7. Tidal shoal of Walsoorden Salt marsh growth from the 1990’s Delft3D 7 Nevla-model: see Vroom et al. (2015)
  8. 8. 2000-2004 2000-2010 2000-2015 2004 2010 2015 2000-2004 2006-2010 2011-2015 Ecotoop_Westerschelde_2010 open water sandy sediments muddy sediments sparse vegetation dense vegetation 8 Vegetation densities
  9. 9. Mortality due to inundation and velocity Inundation period [-] T1 0.3 T2 0.45 Van Belzen et al., 2017 Velocity [m/s] 0.4 0.55 Mortality [%] Min. threshold 100 % 0 % Max. threshold 11
  10. 10. Mortality [%] 100 % 0 % 0.55 m/s Tolerance of different life-stages Inundation period [-] T1 0.3 T2 0.45 Van Belzen et al., 2017 Velocity [m/s] 0.25 0.4 Bouma et al, 2013 12 0.4 m/s Mature vegetation
  11. 11. Mortality [%] 0.25 m/s 100 % 0 % 0.55 m/s Tolerance of different life-stages Inundation period [-] T1 0.3 T2 0.45 Van Belzen et al., 2017 Velocity [m/s] 0.25 0.4 Bouma et al, 2013 13 0.4 m/s Mature vegetationJuveniles
  12. 12. 14 2004 2010 2015 juveniles matures matures 2000-2004 2006-2010 2011-2015 2000-2004 2006-2010 2011-2015 2000-2004 2006-2010 2011-2015 Eco-engineering effects?
  13. 13. Eco-engineering effects 16 Vegetation on flow Flow on vegetation
  14. 14. Eco-engineering effects 17
  15. 15. Inundation period [-] T1 0.3 T2 0.45 Van Belzen et al., 2017 Velocity [m/s] 0.25 0.4 Bouma et al, 2013 Eco-engineering effects on saltmarsh 18
  16. 16. Eco-engineering effects on saltmarsh 19 Inundation period [-] T1 0.3 T2 0.45 Van Belzen et al., 2017 Velocity [m/s] 0.25 0.4 Bouma et al, 2013
  17. 17. 2015 Ecotoop_Westerschelde_2010 open water sandy sediments muddy sediments sparse vegetation dense vegetation 20
  18. 18. 21
  19. 19. 22
  20. 20. Conclusions Modeling of realistic vegetation development: By life-stages that control density gradients based on literature-based mortality thresholds By considering positive eco-engineering effects on velocity and negative eco-engineering effects on inundation period By sufficient grid sizes to guarantee realistic flow pattern or use flooding-drying threshold 23

×