Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning

2,794 views

Published on

2019/01/18
Deep Learning JP:
http://deeplearning.jp/seminar-2/

Published in: Technology
  • Be the first to comment

[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning

  1. 1. 1 Recent Advances in Autoencoder-Based
 Representation Learning Presenter:Tatsuya Matsushima @__tmats__ , Matsuo Lab
  2. 2. Recent Advances in Autoencoder-Based Representation Learning • https://arxiv.org/abs/1812.05069 (Submitted on 12 Dec 2018) • Michael Tschannen, Olivier Bachem, Mario Lucic • ETH Zurich, Google Brain • NeurIPS 2018 Workshop (Bayesian Deep Learning) • http://bayesiandeeplearning.org/ • 19 3 accept • • • ( …) ※ 2
  3. 3. TL; DR • • • meta-prior • ( ) • Rate-Distortion 3
  4. 4. • (SRL) • [DL ] 
 https://www.slideshare.net/DeepLearningJP2016/dl-124128933 • SRL VAE VAE 4
  5. 5. VAE 5
  6. 6. VAE Variational Autoencoder (VAE) [Kingma+ 2014a] • • KL (ELBO) • ELBO (VAE loss ) 6 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] ※ VAE ELBO 𝔼 ̂p(x) [−log pθ(x)] = ℒVAE(θ, ϕ) − 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥pθ(z|x))] −ℒVAE 𝔼 ̂p(x) [−log pθ(x)] ℒVAE ̂p(x)
  7. 7. VAE VAE loss • 1 reparametrization trick • 2 closed-form • , closed-form • 7 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] z(i) ∼ qϕ(z|x(i) ) qϕ(z|x) = 𝒩 ( μϕ(x), diag (σϕ(x))) p(z) = 𝒩(0,I)
  8. 8. f- • f- 
 
 
 • KL divergence • density-ratio trick f- • GAN 8 f f(1) = 0 px py Df (px∥py) = ∫ f ( px(x) py(x) ) py(x)dx f(t) = t log t Df (px∥py) = DKL (px∥py) px py
  9. 9. GAN Density-ratio Trick KL • • • 2 • Discriminator • 
 
 • i.i.d 9 c ∈ {0,1}px py px(x) = p(x|c = 1) py(x) = p(x|c = 0) Sη px(x) px(x) py(x) = p(x|c = 1) p(x|c = 0) = p(c = 1|x) p(c = 0|x) ≈ Sη(x) 1 − Sη(x) px N DKL (px∥py) ≈ 1 N N ∑ i=1 log ( Sη (x(i) ) 1 − Sη (x(i) ))
  10. 10. Maximum Mean Discrepancy (MMD) MMD • embedding • ) MMD • 10 k : 𝒳 → 𝒳 ℋ φ : 𝒳 → ℋ px(x) MMD (px, py) = 𝔼x∼px [φ(x)] − 𝔼y∼py [φ(y)] 2 ℋ py(x) 𝒳 = ℋ = ℝd φ(x) = x MMD (px, py) = μpx − μpy 2 2 φ
  11. 11. Meta-Prior VAE 11
  12. 12. Meta-Prior Meta-prior [Bengio+ 2013] • • • • But • →meta-prior 12
  13. 13. Meta-Prior [Bengio+ 2013] Disentanglement • • ) • • • ) ( ) 13
  14. 14. Meta-Prior [Bengio+ 2013] • • • • 14
  15. 15. Meta-Prior ( ) 
 • meta-prior 15 …
 ( )
  16. 16. Meta-Prior • disentangle • • ) 16
  17. 17. 17
  18. 18. VAE meta-prior aggregate ( ) VAE • aggregate ( ) • VAE 18 z ∼ qϕ(z|x) ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [ R1 (qϕ(z|x))] + λ2R2 (qϕ(z)) qϕ(z|x) qϕ(z) = 𝔼 ̂p(x) [qϕ(z|x)] = 1 N N ∑ i=1 qϕ(z|x(i) ) qϕ(z) ℒVAE
  19. 19. VAE 19 ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [ R1 (qϕ(z|x))] + λ2R2 (qϕ(z)) Optional
  20. 20. VAE • aggregate ( ) • divergence 20 aggregate 
 ( ) 
 qϕ(z)
  21. 21. Disentanglement disentangle • • loss 21 v w x ∼ p(x|v, w) p(v|x) = ∏ j p (vj |x) qϕ(z|x) v
  22. 22. Disentanglement Disentangle • • disentangle disentangle • ( disentangle ) • [Locatello+ 2018] • • (a) ELBO • (b) x z • (c) 22
  23. 23. (a) ELBO β-VAE [Higgins+ 2017] • VAE Loss
 
 
 2 • 23 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [DKL (qKL(q|x)∥p(z))] ℒβ−VAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ1 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] qϕ(z|x) p(z) : [Higgins+ 2017]
  24. 24. (b) x z VAE Loss
 
 2 • 
 aggregate ( ) KL [Hoffman+ 2016] • FactorVAE[Kim+ 2018] • β-TCVAE[Chen+ 2018] InfoVAE[Zhao+ 2017a] DIP-VAE[Kumar+ 2018] 24 ℒVAE(θ, ϕ) = 𝔼 ̂p(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] + 𝔼 ̂p(x) [DKL (qKL(q|x)∥p(z))] 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] = Iqϕ (x; z) + DKL (qϕ(z)∥p(z)) x z Iqϕ (x; z) qϕ(z) p(z)
  25. 25. (b) x z Factor VAE [Kim+ 2018] • βVAE loss 
 • toral correlation
 
 
 • discriminator density ratio trick • [DL ]Disentangling by Factorising
 https://www.slideshare.net/DeepLearningJP2016/dldisentangling-by-factorising 25 ℒβ−VAE DKL (qϕ(z)∥p(z)) Iqϕ (x; z) TC (qϕ(z)) = DKL qϕ(z)∥ ∏ j qϕ (zj) ℒFactorVAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ2 TC (qϕ(z))
  26. 26. (c) HSIC-VAE [Lopez+ 2018] • Hilbert-Schmidt independence criterion (HSIC) [Gretton+2005] 
 • HSIC ( AppendixA ) • 
 • HFVAE [Esmaeili+ 2018] 26 zG = {zk}k∈G ℒHSIC−VAE(θ, ϕ) = ℒVAE(θ, ϕ) + λ2HSIC ( qϕ (zG1), qϕ (zG2)) s HSIC (qϕ(z), p(s)) p(s)
  27. 27. PixelGAN-AE [Makhzani+ 2017] • PixelCNN[van den Oord+ 2016] 
 • • VAE loss KL 
 
 
 • KL GAN VIB[Alemi+ 2016] 
 Information dropout[Achille+ 2018] 27 ℒPixelGAN−AE(θ, ϕ) = ℒVAE(θ, ϕ) − Iqϕ (x; z) 𝔼 ̂p(x) [ DKL (qϕ(z|x)∥p(z))] = Iqϕ (x; z) + DKL (qϕ(z)∥p(z)) Iqϕ (x; z) DKL (qϕ(z)∥p(z)) : [Makhzani+ 2017]
  28. 28. Variational Fair Autoencoder (VFAE) [Louizos+ 2016] • • VAE loss MMD • • MMD HSIC HSIC-VAE[Lopez+ 2018] • 2 VFAE[Louizos+ 2016] HSIC-VAE [Lopez+ 2018] 
 Fader Network[Lample+ 2017] 
 DC-IGN[Kulkarni+ 2015] 28 q(z|s = k) s s s z ℒVAEq(z|s = k′) ℒVFAE(θ, ϕ) = ℒVAE + λ2 K ∑ ℓ=2 MMD (qϕ(z|s = ℓ), qϕ(z|s = 1)) qϕ(z|s = ℓ) = ∑ i:s(i)=ℓ 1 {i : s(i) = ℓ} qϕ(z|x(i) , s(i) )
  29. 29. 29
  30. 30. • ) 30 H: A: N: C: Categorical L: Learned prior
  31. 31. VAE M2 [Kingma+ 2014b] • • • loss 
 • M1 (M1+M2 ) • • DL Hacks Semi-supervised Learning with Deep Generative Models
 https://www.slideshare.net/YuusukeIwasawa/dl-hacks2015-0421iwasawa • Semi-Supervised Learning with Deep Generative Models pixyz 
 https://qiita.com/kogepan102/items/22b685ce7e9a51fbab98 31 qϕ(z, y|x) = qϕ(z|y, x)qϕ(y|x) x z y x qϕ(z, y|x) qϕ(z|y, x) ℒVAEy
  32. 32. VLAE Varational Lossy Autoencoder (VLAE) [Chen+ 2017] • 
 • 
 • ) 
 
 
 
 
 PixelVAE[Gulrajani+ 2017] 
 LadderVAE[Sønderby+ 2016] VLaAE[Zhao+ 2017b] 32 pθ(x|z) z z pθ(x|z) W(j) pθ(x|z) = ∏ j pθ (xj |z, xW( j)) j
  33. 33. 33
  34. 34. meta-prior • meta-prior • ) MNIST 
 ) (SVAE) [Johnson+ 2016] 34 p(z) N: C: Categorical M: mixture G: L; Learned Prior
  35. 35. JointVAE [Dupont 2018] • disentanglement 
 • • Gumbel-Softmax • KL (β-VAE 2 ) VQ-VAE[van den Oord+ 2017] 35 z c qϕ(c|x)qϕ(z|x) qϕ(c|x) DKL (qϕ(z|x)qϕ(c|x)∥p(z)p(c)) = DKL (qϕ(z|x)∥p(z)) + DKL (qϕ(c|x)∥p(c)) ℒβ−VAE
  36. 36. 36
  37. 37. • Denoising Autoencoder (DAE) [Vincent+ 2008] • [Yingzhen+ 2018] [Hsieh+2018] • [Villegas+ 2017] [Denton+ 2017] [Fraccaro+ 2017] 37
  38. 38. discriminator • • Adversarially Learned Inference (ALI) [Dumoulin+ 2017] • Bidirectional GAN (BiGAN) [Donahue+ 2017] 38 qϕ(z|x) pθ(x|z) pθ(x|z)p(z) qϕ(z|x) ̂p(x) : [Dumoulin+ 2017] : [Donahue+ 2017]
  39. 39. Rate-Distortion-Usefulness Tradeoff 39
  40. 40. Rate-Distortion Tradeoff meta-prior • ) βVAE [Higgins+ 2017] FaderNetwork[Lample+ 2017] ”Rate-Distortion Tradeoff”[Alemi+ 2018a] 40
  41. 41. Rate-Distortion Tradeoff • • Distortion: • Rate: KL • VAE ELBO 41 H = − ∫ p(x)log p(x)dx = Ep(x)[−log p(x)] D = − ∬ p(x)qϕ(z|x)log pθ(x|z)dxdz = Ep(x) [ 𝔼qϕ(z|x) [−log pθ(x|z)]] R = ∬ p(x)qϕ(z|x)log qϕ(z|x) p(z) dxdz = 𝔼p(x) [DKL (qθ(q|x)∥p(z))] qϕ(z|x) p(z) ELBO = − ℒVAE = − (D + R)
  42. 42. Rate-Distortion Tradeoff Rate-Distortion Tradeoff [Alemi+ 2018a] • Rate Distortion ) • ELBO • Rate 
 • • [Alemi+ 2018a] Rate 
 • 42 H − D ≤ R : [Alemi+ 2018a] D = H − R min ϕ,θ D + |σ − R| σ
  43. 43. Rate-Distortion Tradeoff Rate • ( ) • ) • • ) 
 Rate-Distortion Tradeoff 43 z z
  44. 44. Rate-Distortion-Usefulness Tradeoff Rate-Distortion-Usefulness Tradeoff • 3 ”usefulness” • • 
 R-D usefulness 
 44
  45. 45. Rate-Distortion-Usefulness Tradeoff Usefulness • • • • [Alemi+ 2018b] 
 ….?( ) 45 Dy = − ∬ p(x, y)qϕ(z|x)log pθ(y|z)dxdydz = 𝔼p(x,y) [ 𝔼qϕ(z|x) [−log pθ(y|z)]] y R − Dy
  46. 46. 46
  47. 47. • meta-prior 
 • ( ) • • supervision • Rate-Distortion • “usefulness” 47
  48. 48. • Rate-Distortion-Usefulness • z ex) GQN • Meta-Prior • meta-learning • [DL ]Meta-Learning Probabilistic Inference for Prediction 
 https://www.slideshare.net/DeepLearningJP2016/dlmetalearning-probabilistic-inference-for- prediction-126167192 • usefulnes ( ) • • Pixyz Pixyzoo ( ) 48
  49. 49. Pixyz & Pixyzoo Pixyz https://github.com/masa-su/pixyz • (Pytorch ) • 
 
 Pixyzoo https://github.com/masa-su/pixyzoo • Pixyz • GQN VIB • [DLHacks]PyTorch, Pixyz Generative Query Network 
 https://www.slideshare.net/DeepLearningJP2016/dlhackspytorch-pixyzgenerative-query- network-126329901 49
  50. 50. Appendix 50
  51. 51. References [Achille+ 2018] A. Achille and S. Soatto, “Information dropout: Learning optimal representations through noisy computation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018. https://ieeexplore.ieee.org/document/8253482 [Alemi+ 2016] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bottleneck,” in International Conference on Learning Representations, 2016. https://openreview.net/forum?id=HyxQzBceg [Alemi+ 2018a] A. Alemi, B. Poole, I. Fischer, J. Dillon, R. A. Saurous, and K. Murphy, “Fixing a broken ELBO,” in Proc. of the International Conference on Machine Learning, 2018, pp. 159–168. http://proceedings.mlr.press/v80/alemi18a.html [Alemi+ 2018b] A. A. Alemi and I. Fischer, “TherML: Thermodynamics of machine learning,” arXiv:1807.04162, 2018. https:// arxiv.org/abs/1807.04162 [Bengio+ 2013] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013. https://ieeexplore.ieee.org/ document/6472238 [Chen+ 2017] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and P. Abbeel, “Variational lossy autoencoder,” in International Conference on Learning Representations, 2017. https://openreview.net/forum? id=BysvGP5ee [Chen+ 2018] T. Q. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources of disentanglement in variational autoencoders,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/7527-isolating- sources-of-disentanglement-in-variational-autoencoders 51
  52. 52. [Denton+ 2017] E. L. Denton and V. Birodkar, “Unsupervised learning of disentangled representations from video,” in Advances in Neural Information Processing Systems, 2017, pp. 4414–4423. https://papers.nips.cc/paper/7028-unsupervised-learning-of- disentangled-representations-from-video [Donahue+ 2017] J. Donahue, P. Krahenb ¨ uhl, and T. Darrell, “Adversarial feature learning,” in ¨ International Conference on Learning Representations, 2017. https://openreview.net/forum?id=BJtNZAFgg [Dumoulin+ 2017] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky, and A. Courville, “Adversarially learned inference,” in International Conference on Learning Representations, 2017. https://openreview.net/forum?id=B1ElR4cgg [Dupont 2018] E. Dupont, “Learning disentangled joint continuous and discrete representations,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/7351-learning-disentangled-joint-continuous-and-discrete- representations [Esmaeili+ 2018] B.Esmaeili,H.Wu,S.Jain,A.Bozkurt,N.Siddharth,B.Paige,D.H.Brooks,J.Dy,andJ.-W. van de Meent, “Structured disentangled representations,” arXiv:1804.02086, 2018. https://arxiv.org/abs/1804.02086 [Fraccaro+ 2017] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther, “A disentangled recognition and nonlinear dynamics model for unsupervised learning,” in Advances in Neural Information Processing Systems, 2017, pp. 3601–3610. https:// papers.nips.cc/paper/6951-a-disentangled-recognition-and-nonlinear-dynamics-model-for-unsupervised-learning [Gretton+ 2005] A. Gretton, O. Bousquet, A. Smola, and B. Scho ̈lkopf, “Measuring statistical dependence with Hilbert-Schmidt norms,” in International Conference on Algorithmic Learning Theory. Springer, 2005, pp. 63–77. https://link.springer.com/chapter/ 10.1007/11564089_7 [Gulrajani+ 2017] I. Gulrajani, K. Kumar, F. Ahmed, A. A. Taiga, F. Visin, D. Vazquez, and A. Courville, “PixelVAE: A latent variable model for natural images,” in International Conference on Learning Representations, 2017. https://openreview.net/ forum?id=BJKYvt5lg References 52
  53. 53. [Higgins+ 2017]  I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, “beta-VAE: Learning basic visual concepts with a constrained variational framework,” in International Conference on Learning Representations, 2017. https://openreview.net/forum?id=Sy2fzU9gl [Hoffman+ 2016] M. D. Hoffman and M. J. Johnson, “Elbo surgery: yet another way to carve up the variational evidence lower bound,” in Workshop in Advances in Approximate Bayesian Inference, NIPS, 2016. http://approximateinference.org/accepted/ HoffmanJohnson2016.pdf [Hsieh+2018] J.-T. Hsieh, B. Liu, D.-A. Huang, L. Fei-Fei, and J. C. Niebles, “Learning to decompose and disentangle representations for video prediction,” in Advances in Neural Information Processing Systems, 2018. http://papers.nips.cc/paper/ 7333-learning-to-decompose-and-disentangle-representations-for-video-prediction [Johnson+ 2016] M. Johnson, D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta, “Composing graphical models with neural networks for structured representations and fast inference,” in Advances in Neural Information Processing Systems, 2016, pp. 2946–2954. https://papers.nips.cc/paper/6379-composing-graphical-models-with-neural-networks-for-structured- representations-and-fast-inference [Kim+ 2018] H. Kim and A. Mnih, “Disentangling by factorising,” in Proc. of the International Conference on Machine Learning, 2018, pp. 2649–2658. http://proceedings.mlr.press/v80/kim18b.html [Kingma+ 2014a] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in International Conference on Learning Representations, 2014. https://openreview.net/forum?id=33X9fd2-9FyZd [Kingma+ 2014b]  D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning with deep generative models,” in Advances in Neural Information Processing Systems, 2014, pp. 3581–3589. https://papers.nips.cc/paper/5352-semi- supervised-learning-with-deep-generative-models References 53
  54. 54. [Kulkarni+ 2015] T.D.Kulkarni, W.F.Whitney, P.Kohli, and J.Tenenbaum, “Deep convolutional inverse graphics network,” in Advances in Neural Information Processing Systems, 2015, pp. 2539–2547. https://papers.nips.cc/paper/5851-deep- convolutional-inverse-graphics-network [Kumar+ 2018] A. Kumar, P. Sattigeri, and A. Balakrishnan, “Variational inference of disentangled latent concepts from unlabeled observations,” in International Conference on Learning Representations, 2018. https://openreview.net/forum? id=H1kG7GZAW [Lample+ 2017] G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer et al., “Fader networks: Manipulating images by sliding attributes,” in Advances in Neural Information Processing Systems, 2017, pp. 5967–5976. https://papers.nips.cc/paper/ 7178-fader-networksmanipulating-images-by-sliding-attributes [Locatello+ 2018] F. Locatello, S. Bauer, M. Lucic, S. Gelly, B. Scho ̈lkopf, and O. Bachem, “Challenging common assumptions in the unsupervised learning of disentangled representations,” arXiv:1811.12359, 2018. https://arxiv.org/abs/1811.12359 [Lopez+ 2018] R. Lopez, J. Regier, M. I. Jordan, and N. Yosef, “Information constraints on auto-encoding variational bayes,” in Advances in Neural Information Processing Systems, 2018. https://papers.nips.cc/paper/7850-information-constraints-on-auto- encoding-variational-bayes [Louizos+ 2016] C. Louizos, K. Swersky, Y. Li, M. Welling, and R. Zemel, “The variational fair autoencoder,” in International Conference on Learning Representations, 2016. https://arxiv.org/abs/1511.00830 [Makhzani+ 2017] A. Makhzani and B. J. Frey, “PixelGAN autoencoders,” in Advances in Neural Information Processing Systems, 2017, pp. 1975–1985. https://papers.nips.cc/paper/6793-pixelgan-autoencoders [Sønderby+ 2016] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther, “Ladder variational autoencoders,” in Advances in Neural Information Processing Systems, 2016, pp. 3738–3746. https://papers.nips.cc/paper/6275-ladder- variational-autoencoders References 54
  55. 55. [van den Oord+ 2016] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, and A. Graves, “Conditional image generation with PixelCNN decoders,” in Advances in Neural Information Processing Systems, 2016, pp. 4790–4798. https:// papers.nips.cc/paper/6527-conditional-image-generation-with-pixelcnn-decoders [van den Oord+ 2017] A. van den Oord, O. Vinyals et al., “Neural discrete representation learning,” in Advances in Neural Information Processing Systems, 2017, pp. 6306–6315. https://papers.nips.cc/paper/7210-neural-discrete-representation- learning [Villegas+ 2017] R. Villegas, J. Yang, S. Hong, X. Lin, and H. Lee, “Decomposing motion and content for natural video sequence prediction,” in International Conference on Learning Representations, 2017. https://openreview.net/forum? id=rkEFLFqee [Vincent+ 2008] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust features with denoising autoencoders,” in Proc. of the International Conference on Machine Learning, 2008, pp. 1096–1103. https:// dl.acm.org/citation.cfm?id=1390294 [Yingzhen+ 2018] L. Yingzhen and S. Mandt, “Disentangled sequential autoencoder,” in Proc. of the International Conference on Machine Learning, 2018, pp. 5656–5665. http://proceedings.mlr.press/v80/yingzhen18a.html [Zhao+ 2017a] S.Zhao, J.Song, and S.Ermon,“InfoVAE: Information maximizing variational autoencoders,” arXiv:1706.02262, 2017. https://arxiv.org/abs/1706.02262 [Zhao+ 2017b] S. Zhao, J. Song, and S. Ermon, “Learning hierarchical features from deep generative models,” in Proc. of the International Conference on Machine Learning, 2017, pp. 4091–4099. http://proceedings.mlr.press/v70/zhao17c.html References 55

×