SlideShare a Scribd company logo

[DL輪読会]Generating Wikipedia by Summarizing Long Sequences

2018/2/23 Deep Learning JP: http://deeplearning.jp/seminar-2/

1 of 27
Download to read offline
1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
Generating Wikipedia by Summarizing Long Sequences
(ICLR 2018)
Toru Fujino, scalab, UTokyo
• . /0
• s ( -:: 8 2 I
• : p 2>2 > goo.gl/wSuuS9 k
• 1 2ILCG B iI rd i
e
• a Ird i I R l
• G ItW )
• B W DC noI2>> > : g
• , ) 1
• ,
•
• : ,
•
•
• :
•
•
• , , ( )
• , ,
1
• .G DC L N
•
• 51 3 2 : 0 6 4 1 (
•
• R
• // 1 2 : /1 1:1 4 1 )
•
•
•
1) Rush et al. “A Neural Attention Model for Sentence Summarization”, EMNLP 2015
2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016
• (,
,, ),( )
• e /
• S
•
/
• 2 A / /
2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016
2)
• 2. 1
/
• 2

Recommended

Machine Learning in Healthcare: What's Now & What's Next
Machine Learning in Healthcare: What's Now & What's NextMachine Learning in Healthcare: What's Now & What's Next
Machine Learning in Healthcare: What's Now & What's NextPointClear Solutions
 
Generating Wikipedia by Summarizing Long Sequences (ICLR 2018)
Generating Wikipedia by Summarizing Long Sequences (ICLR 2018)Generating Wikipedia by Summarizing Long Sequences (ICLR 2018)
Generating Wikipedia by Summarizing Long Sequences (ICLR 2018)Toru Fujino
 
[DL輪読会]A Style-Based Generator Architecture for Generative Adversarial Networks
[DL輪読会]A Style-Based Generator Architecture for Generative Adversarial Networks[DL輪読会]A Style-Based Generator Architecture for Generative Adversarial Networks
[DL輪読会]A Style-Based Generator Architecture for Generative Adversarial NetworksDeep Learning JP
 
[DL輪読会]Domain Adaptive Faster R-CNN for Object Detection in the Wild
[DL輪読会]Domain Adaptive Faster R-CNN for Object Detection in the Wild[DL輪読会]Domain Adaptive Faster R-CNN for Object Detection in the Wild
[DL輪読会]Domain Adaptive Faster R-CNN for Object Detection in the WildDeep Learning JP
 
“Domain Adaptive Faster R-CNN for Object Detection in theWild (CVPR 2018) 他
 “Domain Adaptive Faster R-CNN for Object Detection in theWild (CVPR 2018)  他 “Domain Adaptive Faster R-CNN for Object Detection in theWild (CVPR 2018)  他
“Domain Adaptive Faster R-CNN for Object Detection in theWild (CVPR 2018) 他Kento Doi
 
Using a keyword extraction pipeline to understand concepts in future work sec...
Using a keyword extraction pipeline to understand concepts in future work sec...Using a keyword extraction pipeline to understand concepts in future work sec...
Using a keyword extraction pipeline to understand concepts in future work sec...Kai Li
 
BIng NLP Expert - Dl summer-school-2017.-jianfeng-gao.v2
BIng NLP Expert - Dl summer-school-2017.-jianfeng-gao.v2BIng NLP Expert - Dl summer-school-2017.-jianfeng-gao.v2
BIng NLP Expert - Dl summer-school-2017.-jianfeng-gao.v2Karthik Murugesan
 
An Ontology Model for Knowledge Representation over User Profiles
An Ontology Model for Knowledge Representation over User ProfilesAn Ontology Model for Knowledge Representation over User Profiles
An Ontology Model for Knowledge Representation over User ProfilesIJMER
 

More Related Content

Similar to [DL輪読会]Generating Wikipedia by Summarizing Long Sequences

Survey of the current trends, and the future in Natural Language Generation
Survey of the current trends, and the future in Natural Language Generation Survey of the current trends, and the future in Natural Language Generation
Survey of the current trends, and the future in Natural Language Generation Yu Sheng Su
 
An online semantic enhanced dirichlet model for short text
An online semantic enhanced dirichlet model for short textAn online semantic enhanced dirichlet model for short text
An online semantic enhanced dirichlet model for short textJay Kumarr
 
Open-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data setsOpen-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data setsAnubhav Jain
 
Using Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based LearningUsing Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based LearningDavid Gleich
 
Model of semantic textual document clustering
Model of semantic textual document clusteringModel of semantic textual document clustering
Model of semantic textual document clusteringSK Ahammad Fahad
 
Promoting Science and Technology Exchange using Machine Translation
Promoting Science and Technology Exchange using Machine TranslationPromoting Science and Technology Exchange using Machine Translation
Promoting Science and Technology Exchange using Machine TranslationToshiaki Nakazawa
 
The Materials Project: overview and infrastructure
The Materials Project: overview and infrastructureThe Materials Project: overview and infrastructure
The Materials Project: overview and infrastructureAnubhav Jain
 
Dominik Kowald PhD Defense Recommender Systems
Dominik Kowald PhD Defense Recommender SystemsDominik Kowald PhD Defense Recommender Systems
Dominik Kowald PhD Defense Recommender SystemsDominik Kowald
 
Software Sustainability: Better Software Better Science
Software Sustainability: Better Software Better ScienceSoftware Sustainability: Better Software Better Science
Software Sustainability: Better Software Better ScienceCarole Goble
 
2014 11-13-sbsm032-reproducible research
2014 11-13-sbsm032-reproducible research2014 11-13-sbsm032-reproducible research
2014 11-13-sbsm032-reproducible researchYannick Wurm
 
ET_with_EEG
ET_with_EEGET_with_EEG
ET_with_EEGXuan Guo
 
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic MinerAutomatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic MinerFrancesco Osborne
 
Observation of The Hot Research on Disruptive Science and Technology via Scie...
Observation of The Hot Research on Disruptive Science and Technology via Scie...Observation of The Hot Research on Disruptive Science and Technology via Scie...
Observation of The Hot Research on Disruptive Science and Technology via Scie...Masatsura IGAMI
 
Advances in automating analysis of neural time series
Advances in automating analysis of neural time seriesAdvances in automating analysis of neural time series
Advances in automating analysis of neural time seriesMainak Jas
 
R&D Halfyearly Report.pptx
R&D Halfyearly Report.pptxR&D Halfyearly Report.pptx
R&D Halfyearly Report.pptxSaumya Acharya
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisStuart Wrigley
 

Similar to [DL輪読会]Generating Wikipedia by Summarizing Long Sequences (20)

Survey of the current trends, and the future in Natural Language Generation
Survey of the current trends, and the future in Natural Language Generation Survey of the current trends, and the future in Natural Language Generation
Survey of the current trends, and the future in Natural Language Generation
 
An online semantic enhanced dirichlet model for short text
An online semantic enhanced dirichlet model for short textAn online semantic enhanced dirichlet model for short text
An online semantic enhanced dirichlet model for short text
 
Open-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data setsOpen-source tools for generating and analyzing large materials data sets
Open-source tools for generating and analyzing large materials data sets
 
Text Analysis of Academic Papers Archived in Institutional Repositories
Text Analysis of Academic Papers Archived in Institutional RepositoriesText Analysis of Academic Papers Archived in Institutional Repositories
Text Analysis of Academic Papers Archived in Institutional Repositories
 
Using Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based LearningUsing Local Spectral Methods to Robustify Graph-Based Learning
Using Local Spectral Methods to Robustify Graph-Based Learning
 
Model of semantic textual document clustering
Model of semantic textual document clusteringModel of semantic textual document clustering
Model of semantic textual document clustering
 
DeepLabCut AI Residency
DeepLabCut AI ResidencyDeepLabCut AI Residency
DeepLabCut AI Residency
 
How to make effective presentation
How to make effective presentationHow to make effective presentation
How to make effective presentation
 
Promoting Science and Technology Exchange using Machine Translation
Promoting Science and Technology Exchange using Machine TranslationPromoting Science and Technology Exchange using Machine Translation
Promoting Science and Technology Exchange using Machine Translation
 
The Materials Project: overview and infrastructure
The Materials Project: overview and infrastructureThe Materials Project: overview and infrastructure
The Materials Project: overview and infrastructure
 
Dominik Kowald PhD Defense Recommender Systems
Dominik Kowald PhD Defense Recommender SystemsDominik Kowald PhD Defense Recommender Systems
Dominik Kowald PhD Defense Recommender Systems
 
Software Sustainability: Better Software Better Science
Software Sustainability: Better Software Better ScienceSoftware Sustainability: Better Software Better Science
Software Sustainability: Better Software Better Science
 
2014 11-13-sbsm032-reproducible research
2014 11-13-sbsm032-reproducible research2014 11-13-sbsm032-reproducible research
2014 11-13-sbsm032-reproducible research
 
The data we want
The data we wantThe data we want
The data we want
 
ET_with_EEG
ET_with_EEGET_with_EEG
ET_with_EEG
 
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic MinerAutomatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
 
Observation of The Hot Research on Disruptive Science and Technology via Scie...
Observation of The Hot Research on Disruptive Science and Technology via Scie...Observation of The Hot Research on Disruptive Science and Technology via Scie...
Observation of The Hot Research on Disruptive Science and Technology via Scie...
 
Advances in automating analysis of neural time series
Advances in automating analysis of neural time seriesAdvances in automating analysis of neural time series
Advances in automating analysis of neural time series
 
R&D Halfyearly Report.pptx
R&D Halfyearly Report.pptxR&D Halfyearly Report.pptx
R&D Halfyearly Report.pptx
 
Improving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log AnalysisImproving Semantic Search Using Query Log Analysis
Improving Semantic Search Using Query Log Analysis
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...Deep Learning JP
 
【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデル【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデルDeep Learning JP
 
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...Deep Learning JP
 
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
 
【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデル【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデル
 
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
 
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
 

Recently uploaded

Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Product School
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor FesenkoFwdays
 
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...Neo4j
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementMimmo Squillace
 
How we think about an advisor tech stack
How we think about an advisor tech stackHow we think about an advisor tech stack
How we think about an advisor tech stackSummit
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1Inbay UK
 
HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...
HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...
HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...htrindia
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Product School
 
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...Adrian Sanabria
 
Enterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewEnterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewAshraf Fouad
 
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...MarcovanHurne2
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERNRonnelBaroc
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Umar Saif
 
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...Adrian Sanabria
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceSusan Ibach
 
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner,  Challenge Like a VC by former CPO, TripadvisorAct Like an Owner,  Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner, Challenge Like a VC by former CPO, TripadvisorProduct School
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, GoogleISPMAIndia
 
Battle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsBattle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsEvangelia Mitsopoulou
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfSafe Software
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxVotarikari Shravan
 

Recently uploaded (20)

Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
Cultivating Entrepreneurial Mindset in Product Management: Strategies for Suc...
 
"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko"Platform Engineering with Development Containers", Igor Fesenko
"Platform Engineering with Development Containers", Igor Fesenko
 
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
ASTRAZENECA. Knowledge Graphs Powering a Fast-moving Global Life Sciences Org...
 
AI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvementAI Act & Standardization: UNINFO involvement
AI Act & Standardization: UNINFO involvement
 
How we think about an advisor tech stack
How we think about an advisor tech stackHow we think about an advisor tech stack
How we think about an advisor tech stack
 
IT Nation Evolve event 2024 - Quarter 1
IT Nation Evolve event 2024  - Quarter 1IT Nation Evolve event 2024  - Quarter 1
IT Nation Evolve event 2024 - Quarter 1
 
HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...
HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...
HBR SERIES METAL HOUSED RESISTORS POWER ELECTRICAL ABSORBS HIGH CURRENT DURIN...
 
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...Relationship Counselling: From Disjointed Features to Product-First Thinking ...
Relationship Counselling: From Disjointed Features to Product-First Thinking ...
 
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
Early Tech Adoption: Foolish or Pragmatic? - 17th ISACA South Florida WOW Con...
 
Enterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book ReviewEnterprise Architecture As Strategy - Book Review
Enterprise Architecture As Strategy - Book Review
 
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
Digital Transformation Strategy & Plan Templates - www.beyondthecloud.digital...
 
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
21ST CENTURY LITERACY FROM TRADITIONAL TO MODERN
 
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
Progress Report: Ministry of IT under Dr. Umar Saif Aug 23-Feb'24
 
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
Avoiding Bad Stats and the Benefits of Playing Trivia with Friends: PancakesC...
 
Confoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data scienceConfoo 2024 Gettings started with OpenAI and data science
Confoo 2024 Gettings started with OpenAI and data science
 
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner,  Challenge Like a VC by former CPO, TripadvisorAct Like an Owner,  Challenge Like a VC by former CPO, Tripadvisor
Act Like an Owner, Challenge Like a VC by former CPO, Tripadvisor
 
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
"The Transformative Power of AI and Open Challenges" by Dr. Manish Gupta, Google
 
Battle of React State Managers in frontend applications
Battle of React State Managers in frontend applicationsBattle of React State Managers in frontend applications
Battle of React State Managers in frontend applications
 
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdfIntroducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
Introducing the New FME Community Webinar - Feb 21, 2024 (2).pdf
 
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docxLeveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
Leveraging SLF4j for Effective Logging in IBM App Connect Enterprise.docx
 

[DL輪読会]Generating Wikipedia by Summarizing Long Sequences

  • 1. 1 DEEP LEARNING JP [DL Papers] http://deeplearning.jp/ Generating Wikipedia by Summarizing Long Sequences (ICLR 2018) Toru Fujino, scalab, UTokyo
  • 2. • . /0 • s ( -:: 8 2 I • : p 2>2 > goo.gl/wSuuS9 k • 1 2ILCG B iI rd i e • a Ird i I R l • G ItW ) • B W DC noI2>> > : g
  • 3. • , ) 1 • , • • : , • • • : • • • , , ( ) • , ,
  • 4. 1 • .G DC L N • • 51 3 2 : 0 6 4 1 ( • • R • // 1 2 : /1 1:1 4 1 ) • • • 1) Rush et al. “A Neural Attention Model for Sentence Summarization”, EMNLP 2015 2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016
  • 5. • (, ,, ),( ) • e / • S • / • 2 A / / 2) Nallapati et al. “Abstractive Text Summarization using Sequence-to-Sequence RNNs and Beyond”, CoNLL 2016 2)
  • 7. • 1 W R a • • 2 G • 00 . c • • 1 d https://en.wikipedia.org/wiki/Deep_learning
  • 11. • 3 43 4 Y p • CD 4 M i • ac c 43 , 4 a • d ac c n nY r Ly • ot ldA CN m m 3 43 e • 4 , 3 43 m u • ) 24 : 42 3 43 m • s e 3) A. Vaswani et al. “Attention is All You Need”, NIPS 2017 4) N. Shazzer et al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, ICLR 2017
  • 12. • . . • 3 .) • .) A • ( 3 .) : : 3) A. Vaswani et al. “Attention is All You Need”, NIPS 2017
  • 13. • ( 2 • E !" = [!% " , !' " , … , !)" " ] • E !+ = [!% + , !' + , … , !)+ + ] • ) E • A : D 5) M.-T. Luong et al. “Effective Approaches to Attention-based Neural Machine translation”, EMNLP 2015 5)
  • 14. • ( - E • : D • : D • ) : D • E : A
  • 15. • • A , - •
  • 16. • K K V 2 5 /6 ) , • ( A 6 • 6
  • 17. • L K 3 ASA • V = • . • 11,/1 / •
  • 18. ) ( • ) • /( 4) N. Shazzer et al. “Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer”, ICLR 2017 4)
  • 19. • 9 L • 2 / 02 2 / 02 2 / • 9 • M - - - 9 = • -1 5
  • 20.
  • 21. • - - • - • - • :
  • 22.
  • 27. • M • / / -,/ p k lsr im e • W lsr f : • n s k • a a > - - / • - / y • -2 2 - -, - / Wy • • ot C L c A • L M d L C • lsr : L