Presented at the ML Platforms Meetup at Pinterest HQ in San Francisco on August 16, 2018.
Abstract: At LinkedIn we observed that much of the complexity in our machine learning applications was in their feature preparation workflows. To address this problem, we built Frame, a shared virtual feature store that provides a unified abstraction layer for accessing features by name. Frame removes the need for feature consumers to deal directly with underlying data sources, which are often different across computing environments. By simplifying feature preparation, Frame has made ML applications at LinkedIn easier to build, modify, and understand.