SlideShare a Scribd company logo

AI Product Manager

Presentation "AI Product Manager" at the Digital Product School (on 10/22/2020) from Datentreiber. Content: • Overview over the AI product innovation cycle • AI Thinking: ideating and prioritizing the right use cases • AI Prototyping: testing critical hypotheses with experiments • AI Engineering: building scalable & user friendly AI applications • AI Management: maintaining AI solutions with DataOps • Outlook: how to become an AI product manager (links & more)

1 of 69
Martin Szugat @ Digital Product School on 10/22/2020
AI Product Manager
Agenda
Overview over the AI product innovation cycle00:15
AI Thinking: ideating and prioritizing the right use cases00:30
AI Prototyping: testing critical hypotheses with experiments00:45
AI Engineering: building scalable & user friendly AI applications01:00
AI Management: maintaining AI solutions with DataOps01:15
Outlook: how to become an AI product manager (links & more)01:30
Q&A01:45
Welcoming: introduction & agenda00:00
AI Product Manager
4
1996-2008
IT-Consultant, Author and
Software Developer
Study and Research of
Bioinformatics (Data Science)
2001-2008
Managing Director & Shareholder of SnipClip
GmbH (Marketing Agency)
2008-2013
Program Director of the Predictive
Analytics World & Deep Learning World
(Conference Series)
2014-dato
Managing Director & Founder of
Datentreiber GmbH (Consultancy)
2014-dato
Advisory Board for Media & IT
for DDG AG (AI Company Builder)
2020-dato
Martin Szugat
Shareholder of Digitaltreiber GmbH
(Recruitment Agency)
2016-dato
Chief Data Officer & Shareholder
of 42AI GmbH (AI Market Network)
2018-dato
5
Agenda
Welcoming: introduction & agenda00:00
Overview over the AI product innovation cycle00:15
AI Thinking: ideating and prioritizing the right use cases00:30
AI Prototyping: testing critical hypotheses with experiments00:45
AI Engineering: building scalable & user friendly AI applications01:00
AI Management: maintaining AI solutions with DataOps01:15
Outlook: how to become an AI product manager (links & more)01:30
Q&A01:45
Ad

Recommended

Data Strategy Design: An Open Source Toolbox & Method for Data Thinking.
Data Strategy Design: An Open Source Toolbox & Method for Data Thinking. Data Strategy Design: An Open Source Toolbox & Method for Data Thinking.
Data Strategy Design: An Open Source Toolbox & Method for Data Thinking. Datentreiber
 
Generative AI - Responsible Path Forward.pdf
Generative AI - Responsible Path Forward.pdfGenerative AI - Responsible Path Forward.pdf
Generative AI - Responsible Path Forward.pdfSaeed Al Dhaheri
 
Leveraging Generative AI & Best practices
Leveraging Generative AI & Best practicesLeveraging Generative AI & Best practices
Leveraging Generative AI & Best practicesDianaGray10
 
Exploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdfExploring Opportunities in the Generative AI Value Chain.pdf
Exploring Opportunities in the Generative AI Value Chain.pdfDung Hoang
 
An Introduction to Generative AI - May 18, 2023
An Introduction  to Generative AI - May 18, 2023An Introduction  to Generative AI - May 18, 2023
An Introduction to Generative AI - May 18, 2023CoriFaklaris1
 
Using Generative AI
Using Generative AIUsing Generative AI
Using Generative AIMark DeLoura
 
Generative-AI-in-enterprise-20230615.pdf
Generative-AI-in-enterprise-20230615.pdfGenerative-AI-in-enterprise-20230615.pdf
Generative-AI-in-enterprise-20230615.pdfLiming Zhu
 
AI and ML Series - Leveraging Generative AI and LLMs Using the UiPath Platfor...
AI and ML Series - Leveraging Generative AI and LLMs Using the UiPath Platfor...AI and ML Series - Leveraging Generative AI and LLMs Using the UiPath Platfor...
AI and ML Series - Leveraging Generative AI and LLMs Using the UiPath Platfor...DianaGray10
 

More Related Content

What's hot

The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021Steve Omohundro
 
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...Edge AI and Vision Alliance
 
A Framework for Navigating Generative Artificial Intelligence for Enterprise
A Framework for Navigating Generative Artificial Intelligence for EnterpriseA Framework for Navigating Generative Artificial Intelligence for Enterprise
A Framework for Navigating Generative Artificial Intelligence for EnterpriseRocketSource
 
Using the power of Generative AI at scale
Using the power of Generative AI at scaleUsing the power of Generative AI at scale
Using the power of Generative AI at scaleMaxim Salnikov
 
Using Data Strategy Design to Build Data-Driven Products
Using Data Strategy Design to Build Data-Driven ProductsUsing Data Strategy Design to Build Data-Driven Products
Using Data Strategy Design to Build Data-Driven ProductsDatentreiber
 
Generative AI and law.pptx
Generative AI and law.pptxGenerative AI and law.pptx
Generative AI and law.pptxChris Marsden
 
Generative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second SessionGenerative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second SessionGene Leybzon
 
Cavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AICavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AICavalry Ventures
 
Unlocking the Power of Generative AI An Executive's Guide.pdf
Unlocking the Power of Generative AI An Executive's Guide.pdfUnlocking the Power of Generative AI An Executive's Guide.pdf
Unlocking the Power of Generative AI An Executive's Guide.pdfPremNaraindas1
 
GENERATIVE AI, THE FUTURE OF PRODUCTIVITY
GENERATIVE AI, THE FUTURE OF PRODUCTIVITYGENERATIVE AI, THE FUTURE OF PRODUCTIVITY
GENERATIVE AI, THE FUTURE OF PRODUCTIVITYAndre Muscat
 
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬VINCI Digital - Industrial IoT (IIoT) Strategic Advisory
 
Generative AI Risks & Concerns
Generative AI Risks & ConcernsGenerative AI Risks & Concerns
Generative AI Risks & ConcernsAjitesh Kumar
 
The Future is in Responsible Generative AI
The Future is in Responsible Generative AIThe Future is in Responsible Generative AI
The Future is in Responsible Generative AISaeed Al Dhaheri
 
AI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERSAI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERSAndre Muscat
 
Algorithmic Bias: Challenges and Opportunities for AI in Healthcare
Algorithmic Bias:  Challenges and Opportunities for AI in HealthcareAlgorithmic Bias:  Challenges and Opportunities for AI in Healthcare
Algorithmic Bias: Challenges and Opportunities for AI in HealthcareGregory Nelson
 
AI Governance – The Responsible Use of AI
AI Governance – The Responsible Use of AIAI Governance – The Responsible Use of AI
AI Governance – The Responsible Use of AINUS-ISS
 
Understanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application QualityUnderstanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application QualityDevOps.com
 
"I don't trust AI": the role of explainability in responsible AI
"I don't trust AI": the role of explainability in responsible AI"I don't trust AI": the role of explainability in responsible AI
"I don't trust AI": the role of explainability in responsible AIErika Agostinelli
 
How to build a generative AI solution From prototyping to production.pdf
How to build a generative AI solution From prototyping to production.pdfHow to build a generative AI solution From prototyping to production.pdf
How to build a generative AI solution From prototyping to production.pdfStephenAmell4
 

What's hot (20)

The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021The Future of AI is Generative not Discriminative 5/26/2021
The Future of AI is Generative not Discriminative 5/26/2021
 
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
 
A Framework for Navigating Generative Artificial Intelligence for Enterprise
A Framework for Navigating Generative Artificial Intelligence for EnterpriseA Framework for Navigating Generative Artificial Intelligence for Enterprise
A Framework for Navigating Generative Artificial Intelligence for Enterprise
 
Using the power of Generative AI at scale
Using the power of Generative AI at scaleUsing the power of Generative AI at scale
Using the power of Generative AI at scale
 
Using Data Strategy Design to Build Data-Driven Products
Using Data Strategy Design to Build Data-Driven ProductsUsing Data Strategy Design to Build Data-Driven Products
Using Data Strategy Design to Build Data-Driven Products
 
Generative AI and law.pptx
Generative AI and law.pptxGenerative AI and law.pptx
Generative AI and law.pptx
 
Generative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second SessionGenerative AI Use cases for Enterprise - Second Session
Generative AI Use cases for Enterprise - Second Session
 
Cavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AICavalry Ventures | Deep Dive: Generative AI
Cavalry Ventures | Deep Dive: Generative AI
 
Unlocking the Power of Generative AI An Executive's Guide.pdf
Unlocking the Power of Generative AI An Executive's Guide.pdfUnlocking the Power of Generative AI An Executive's Guide.pdf
Unlocking the Power of Generative AI An Executive's Guide.pdf
 
GENERATIVE AI, THE FUTURE OF PRODUCTIVITY
GENERATIVE AI, THE FUTURE OF PRODUCTIVITYGENERATIVE AI, THE FUTURE OF PRODUCTIVITY
GENERATIVE AI, THE FUTURE OF PRODUCTIVITY
 
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬
𝐆𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐀𝐈: 𝐂𝐡𝐚𝐧𝐠𝐢𝐧𝐠 𝐇𝐨𝐰 𝐁𝐮𝐬𝐢𝐧𝐞𝐬𝐬 𝐈𝐧𝐧𝐨𝐯𝐚𝐭𝐞𝐬 𝐚𝐧𝐝 𝐎𝐩𝐞𝐫𝐚𝐭𝐞𝐬
 
Generative AI Risks & Concerns
Generative AI Risks & ConcernsGenerative AI Risks & Concerns
Generative AI Risks & Concerns
 
The Future is in Responsible Generative AI
The Future is in Responsible Generative AIThe Future is in Responsible Generative AI
The Future is in Responsible Generative AI
 
AI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERSAI FOR BUSINESS LEADERS
AI FOR BUSINESS LEADERS
 
Algorithmic Bias: Challenges and Opportunities for AI in Healthcare
Algorithmic Bias:  Challenges and Opportunities for AI in HealthcareAlgorithmic Bias:  Challenges and Opportunities for AI in Healthcare
Algorithmic Bias: Challenges and Opportunities for AI in Healthcare
 
AI Governance – The Responsible Use of AI
AI Governance – The Responsible Use of AIAI Governance – The Responsible Use of AI
AI Governance – The Responsible Use of AI
 
Understanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application QualityUnderstanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application Quality
 
The-CxO-Guide-to.pdf
The-CxO-Guide-to.pdfThe-CxO-Guide-to.pdf
The-CxO-Guide-to.pdf
 
"I don't trust AI": the role of explainability in responsible AI
"I don't trust AI": the role of explainability in responsible AI"I don't trust AI": the role of explainability in responsible AI
"I don't trust AI": the role of explainability in responsible AI
 
How to build a generative AI solution From prototyping to production.pdf
How to build a generative AI solution From prototyping to production.pdfHow to build a generative AI solution From prototyping to production.pdf
How to build a generative AI solution From prototyping to production.pdf
 

Similar to AI Product Manager

Space Data Strategy
Space Data StrategySpace Data Strategy
Space Data StrategyDatentreiber
 
Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)
Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)
Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)Shift Conference
 
Reading the IBM AI Strategy for Business
Reading the IBM AI Strategy for BusinessReading the IBM AI Strategy for Business
Reading the IBM AI Strategy for BusinessPietro Leo
 
Data Thinking Preview - Predictive Analytics World for Industry 4.0
Data Thinking Preview - Predictive Analytics World for Industry 4.0Data Thinking Preview - Predictive Analytics World for Industry 4.0
Data Thinking Preview - Predictive Analytics World for Industry 4.0Datentreiber
 
[DSC Europe 22] The Making of a Data Organization - Denys Holovatyi
[DSC Europe 22] The Making of a Data Organization - Denys Holovatyi[DSC Europe 22] The Making of a Data Organization - Denys Holovatyi
[DSC Europe 22] The Making of a Data Organization - Denys HolovatyiDataScienceConferenc1
 
[DSC Adria 23] Tarry Singh Building High dencity startup.pdf
[DSC Adria 23] Tarry Singh Building High dencity startup.pdf[DSC Adria 23] Tarry Singh Building High dencity startup.pdf
[DSC Adria 23] Tarry Singh Building High dencity startup.pdfDataScienceConferenc1
 
Big Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELD
Big Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELDBig Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELD
Big Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELDMatt Stubbs
 
Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?
Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?
Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?AgileNetwork
 
Predictive Data Analytics and Artificial Intelligence by 40°
Predictive Data Analytics and Artificial Intelligence by 40°Predictive Data Analytics and Artificial Intelligence by 40°
Predictive Data Analytics and Artificial Intelligence by 40°40° Labor für Innovation
 
Data Science in Manufacturing and Automation
Data Science in Manufacturing and AutomationData Science in Manufacturing and Automation
Data Science in Manufacturing and AutomationRavishankar Rajagopalan
 
Four Key Considerations for your Big Data Analytics Strategy
Four Key Considerations for your Big Data Analytics StrategyFour Key Considerations for your Big Data Analytics Strategy
Four Key Considerations for your Big Data Analytics StrategyArcadia Data
 
The 3 Key Barriers Keeping Companies from Deploying Data Products
The 3 Key Barriers Keeping Companies from Deploying Data Products The 3 Key Barriers Keeping Companies from Deploying Data Products
The 3 Key Barriers Keeping Companies from Deploying Data Products Dataiku
 
Self-Service Analytics Framework - Connected Brains 2018
Self-Service Analytics Framework - Connected Brains 2018Self-Service Analytics Framework - Connected Brains 2018
Self-Service Analytics Framework - Connected Brains 2018LoQutus
 
"Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient...
"Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient..."Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient...
"Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient...Dataconomy Media
 
Playing Nice in the Product Playground
Playing Nice in the Product PlaygroundPlaying Nice in the Product Playground
Playing Nice in the Product PlaygroundIntuit Inc.
 
Bootcamp Analitics Translator Preview Material .pdf
Bootcamp Analitics Translator Preview Material .pdfBootcamp Analitics Translator Preview Material .pdf
Bootcamp Analitics Translator Preview Material .pdfMartinAgnes
 

Similar to AI Product Manager (20)

Space Data Strategy
Space Data StrategySpace Data Strategy
Space Data Strategy
 
Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)
Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)
Shift AI 2020: Building AI-first Products - Ehsan Yousefzadeh (AIG Investments)
 
Reading the IBM AI Strategy for Business
Reading the IBM AI Strategy for BusinessReading the IBM AI Strategy for Business
Reading the IBM AI Strategy for Business
 
Data Thinking Preview - Predictive Analytics World for Industry 4.0
Data Thinking Preview - Predictive Analytics World for Industry 4.0Data Thinking Preview - Predictive Analytics World for Industry 4.0
Data Thinking Preview - Predictive Analytics World for Industry 4.0
 
[DSC Europe 22] The Making of a Data Organization - Denys Holovatyi
[DSC Europe 22] The Making of a Data Organization - Denys Holovatyi[DSC Europe 22] The Making of a Data Organization - Denys Holovatyi
[DSC Europe 22] The Making of a Data Organization - Denys Holovatyi
 
[DSC Adria 23] Tarry Singh Building High dencity startup.pdf
[DSC Adria 23] Tarry Singh Building High dencity startup.pdf[DSC Adria 23] Tarry Singh Building High dencity startup.pdf
[DSC Adria 23] Tarry Singh Building High dencity startup.pdf
 
Big Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELD
Big Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELDBig Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELD
Big Data LDN 2018: THE PATH TO ENTERPRISE AI: TALES FROM THE FIELD
 
Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?
Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?
Agile Mumbai 2022 - Ashwinee Singh | Agile in AI or AI in Agile?
 
Predictive Data Analytics and Artificial Intelligence by 40°
Predictive Data Analytics and Artificial Intelligence by 40°Predictive Data Analytics and Artificial Intelligence by 40°
Predictive Data Analytics and Artificial Intelligence by 40°
 
Data Science in Manufacturing and Automation
Data Science in Manufacturing and AutomationData Science in Manufacturing and Automation
Data Science in Manufacturing and Automation
 
Four Key Considerations for your Big Data Analytics Strategy
Four Key Considerations for your Big Data Analytics StrategyFour Key Considerations for your Big Data Analytics Strategy
Four Key Considerations for your Big Data Analytics Strategy
 
The 3 Key Barriers Keeping Companies from Deploying Data Products
The 3 Key Barriers Keeping Companies from Deploying Data Products The 3 Key Barriers Keeping Companies from Deploying Data Products
The 3 Key Barriers Keeping Companies from Deploying Data Products
 
Agile BI success factors
Agile BI success factorsAgile BI success factors
Agile BI success factors
 
Sumyag profile deck
Sumyag profile deck Sumyag profile deck
Sumyag profile deck
 
Self-Service Analytics Framework - Connected Brains 2018
Self-Service Analytics Framework - Connected Brains 2018Self-Service Analytics Framework - Connected Brains 2018
Self-Service Analytics Framework - Connected Brains 2018
 
Demystifying ML/AI
Demystifying ML/AIDemystifying ML/AI
Demystifying ML/AI
 
"Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient...
"Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient..."Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient...
"Hadoop: What we've learned in 5 years", Martin Oberhuber, Senior Data Scient...
 
Playing Nice in the Product Playground
Playing Nice in the Product PlaygroundPlaying Nice in the Product Playground
Playing Nice in the Product Playground
 
Challenges of Executing AI
Challenges of Executing AIChallenges of Executing AI
Challenges of Executing AI
 
Bootcamp Analitics Translator Preview Material .pdf
Bootcamp Analitics Translator Preview Material .pdfBootcamp Analitics Translator Preview Material .pdf
Bootcamp Analitics Translator Preview Material .pdf
 

More from Datentreiber

Collaborative Data UX Design - Virtually and Phyically
Collaborative Data UX Design - Virtually and Phyically Collaborative Data UX Design - Virtually and Phyically
Collaborative Data UX Design - Virtually and Phyically Datentreiber
 
Social Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugen
Social Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugenSocial Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugen
Social Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugenDatentreiber
 
Let's fight Covid19 together with AI.
Let's fight Covid19 together with AI.Let's fight Covid19 together with AI.
Let's fight Covid19 together with AI.Datentreiber
 
Social Media bringt's nicht? - Hold my beer.
Social Media bringt's nicht? - Hold my beer.Social Media bringt's nicht? - Hold my beer.
Social Media bringt's nicht? - Hold my beer.Datentreiber
 
Design Thinking zur Optimierung der Customer Journey
Design Thinking zur Optimierung der Customer JourneyDesign Thinking zur Optimierung der Customer Journey
Design Thinking zur Optimierung der Customer JourneyDatentreiber
 
Design Thinking for Data Superwomen & Supermen
Design Thinking for Data Superwomen & SupermenDesign Thinking for Data Superwomen & Supermen
Design Thinking for Data Superwomen & SupermenDatentreiber
 
Erfolgreiche Datenstrategien für PIM & MDM entwerfen
Erfolgreiche Datenstrategien für PIM & MDM entwerfenErfolgreiche Datenstrategien für PIM & MDM entwerfen
Erfolgreiche Datenstrategien für PIM & MDM entwerfenDatentreiber
 
Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...
Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...
Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...Datentreiber
 
Data Driven Marketing - Die ersten Schritte in ein datengetriebenes Marketing
Data Driven Marketing - Die ersten Schritte in ein datengetriebenes MarketingData Driven Marketing - Die ersten Schritte in ein datengetriebenes Marketing
Data Driven Marketing - Die ersten Schritte in ein datengetriebenes MarketingDatentreiber
 
Social Media: Datenschatz oder Datentruhe?
Social Media: Datenschatz oder Datentruhe?Social Media: Datenschatz oder Datentruhe?
Social Media: Datenschatz oder Datentruhe?Datentreiber
 
Data-Driven Marketing Workshop
Data-Driven Marketing WorkshopData-Driven Marketing Workshop
Data-Driven Marketing WorkshopDatentreiber
 
Mit Design Thinking zur erfolgreichen Customer Journey
Mit Design Thinking zur erfolgreichen Customer JourneyMit Design Thinking zur erfolgreichen Customer Journey
Mit Design Thinking zur erfolgreichen Customer JourneyDatentreiber
 
Vorstellung von Datentreiber
Vorstellung von DatentreiberVorstellung von Datentreiber
Vorstellung von DatentreiberDatentreiber
 
Datenstrategie-Seminar
Datenstrategie-SeminarDatenstrategie-Seminar
Datenstrategie-SeminarDatentreiber
 
Datenstrategie-Workshop
Datenstrategie-WorkshopDatenstrategie-Workshop
Datenstrategie-WorkshopDatentreiber
 
Mit Design Thinking zum datengetriebenen Marketing
Mit Design Thinking zum datengetriebenen MarketingMit Design Thinking zum datengetriebenen Marketing
Mit Design Thinking zum datengetriebenen MarketingDatentreiber
 
Self-Service.AI - Pitch Competition for AI-Driven SaaS Startups
Self-Service.AI - Pitch Competition for AI-Driven SaaS StartupsSelf-Service.AI - Pitch Competition for AI-Driven SaaS Startups
Self-Service.AI - Pitch Competition for AI-Driven SaaS StartupsDatentreiber
 
Content Analytics einfach gemacht
Content Analytics einfach gemachtContent Analytics einfach gemacht
Content Analytics einfach gemachtDatentreiber
 
Predictive Analytics World Berlin 2016 Call for Speakers
Predictive Analytics World Berlin 2016 Call for SpeakersPredictive Analytics World Berlin 2016 Call for Speakers
Predictive Analytics World Berlin 2016 Call for SpeakersDatentreiber
 
Mit Predictive Analytics neue Trends in Social Data erkennen.
Mit Predictive Analytics neue Trends in Social Data erkennen.Mit Predictive Analytics neue Trends in Social Data erkennen.
Mit Predictive Analytics neue Trends in Social Data erkennen.Datentreiber
 

More from Datentreiber (20)

Collaborative Data UX Design - Virtually and Phyically
Collaborative Data UX Design - Virtually and Phyically Collaborative Data UX Design - Virtually and Phyically
Collaborative Data UX Design - Virtually and Phyically
 
Social Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugen
Social Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugenSocial Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugen
Social Data Strategy: Mehr Wert aus Daten von Facebook & Co. erzeugen
 
Let's fight Covid19 together with AI.
Let's fight Covid19 together with AI.Let's fight Covid19 together with AI.
Let's fight Covid19 together with AI.
 
Social Media bringt's nicht? - Hold my beer.
Social Media bringt's nicht? - Hold my beer.Social Media bringt's nicht? - Hold my beer.
Social Media bringt's nicht? - Hold my beer.
 
Design Thinking zur Optimierung der Customer Journey
Design Thinking zur Optimierung der Customer JourneyDesign Thinking zur Optimierung der Customer Journey
Design Thinking zur Optimierung der Customer Journey
 
Design Thinking for Data Superwomen & Supermen
Design Thinking for Data Superwomen & SupermenDesign Thinking for Data Superwomen & Supermen
Design Thinking for Data Superwomen & Supermen
 
Erfolgreiche Datenstrategien für PIM & MDM entwerfen
Erfolgreiche Datenstrategien für PIM & MDM entwerfenErfolgreiche Datenstrategien für PIM & MDM entwerfen
Erfolgreiche Datenstrategien für PIM & MDM entwerfen
 
Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...
Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...
Wie Sie mit Datenstrategie-Design den analytischen Reifegrad Ihres Marketings...
 
Data Driven Marketing - Die ersten Schritte in ein datengetriebenes Marketing
Data Driven Marketing - Die ersten Schritte in ein datengetriebenes MarketingData Driven Marketing - Die ersten Schritte in ein datengetriebenes Marketing
Data Driven Marketing - Die ersten Schritte in ein datengetriebenes Marketing
 
Social Media: Datenschatz oder Datentruhe?
Social Media: Datenschatz oder Datentruhe?Social Media: Datenschatz oder Datentruhe?
Social Media: Datenschatz oder Datentruhe?
 
Data-Driven Marketing Workshop
Data-Driven Marketing WorkshopData-Driven Marketing Workshop
Data-Driven Marketing Workshop
 
Mit Design Thinking zur erfolgreichen Customer Journey
Mit Design Thinking zur erfolgreichen Customer JourneyMit Design Thinking zur erfolgreichen Customer Journey
Mit Design Thinking zur erfolgreichen Customer Journey
 
Vorstellung von Datentreiber
Vorstellung von DatentreiberVorstellung von Datentreiber
Vorstellung von Datentreiber
 
Datenstrategie-Seminar
Datenstrategie-SeminarDatenstrategie-Seminar
Datenstrategie-Seminar
 
Datenstrategie-Workshop
Datenstrategie-WorkshopDatenstrategie-Workshop
Datenstrategie-Workshop
 
Mit Design Thinking zum datengetriebenen Marketing
Mit Design Thinking zum datengetriebenen MarketingMit Design Thinking zum datengetriebenen Marketing
Mit Design Thinking zum datengetriebenen Marketing
 
Self-Service.AI - Pitch Competition for AI-Driven SaaS Startups
Self-Service.AI - Pitch Competition for AI-Driven SaaS StartupsSelf-Service.AI - Pitch Competition for AI-Driven SaaS Startups
Self-Service.AI - Pitch Competition for AI-Driven SaaS Startups
 
Content Analytics einfach gemacht
Content Analytics einfach gemachtContent Analytics einfach gemacht
Content Analytics einfach gemacht
 
Predictive Analytics World Berlin 2016 Call for Speakers
Predictive Analytics World Berlin 2016 Call for SpeakersPredictive Analytics World Berlin 2016 Call for Speakers
Predictive Analytics World Berlin 2016 Call for Speakers
 
Mit Predictive Analytics neue Trends in Social Data erkennen.
Mit Predictive Analytics neue Trends in Social Data erkennen.Mit Predictive Analytics neue Trends in Social Data erkennen.
Mit Predictive Analytics neue Trends in Social Data erkennen.
 

Recently uploaded

UniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tourUniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tourUSC_Library
 
Intuition behind Monte Carlo Markov Chains
Intuition behind Monte Carlo Markov ChainsIntuition behind Monte Carlo Markov Chains
Intuition behind Monte Carlo Markov ChainsTushar Tank
 
Chromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-PrincipleChromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-Principleblessipriyanka
 
BTKi in Treatment Of Chronic Lymphocytic Leukemia
BTKi in Treatment Of Chronic Lymphocytic LeukemiaBTKi in Treatment Of Chronic Lymphocytic Leukemia
BTKi in Treatment Of Chronic Lymphocytic LeukemiaFaheema Hasan
 
ICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten NotesICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten NotesGauri S
 
EDL 290F Week 1 - Meet Me at the Start Line.pdf
EDL 290F Week 1 - Meet Me at the Start Line.pdfEDL 290F Week 1 - Meet Me at the Start Line.pdf
EDL 290F Week 1 - Meet Me at the Start Line.pdfElizabeth Walsh
 
Shapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley DiscussionShapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley DiscussionTushar Tank
 
Overview of Databases and Data Modelling-2.pdf
Overview of Databases and Data Modelling-2.pdfOverview of Databases and Data Modelling-2.pdf
Overview of Databases and Data Modelling-2.pdfChristalin Nelson
 
Practical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptxPractical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptxKatherine Villaluna
 
Food Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in CanvasFood Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in CanvasAlexandraSwartzwelde
 
2.20.24 The March on Washington for Jobs and Freedom.pptx
2.20.24 The March on Washington for Jobs and Freedom.pptx2.20.24 The March on Washington for Jobs and Freedom.pptx
2.20.24 The March on Washington for Jobs and Freedom.pptxMaryPotorti1
 
Overview of Databases and Data Modelling-1.pdf
Overview of Databases and Data Modelling-1.pdfOverview of Databases and Data Modelling-1.pdf
Overview of Databases and Data Modelling-1.pdfChristalin Nelson
 
UniSC Fraser Coast library self-guided tour
UniSC Fraser Coast library self-guided tourUniSC Fraser Coast library self-guided tour
UniSC Fraser Coast library self-guided tourUSC_Library
 
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTScatch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTSCarlaNicolas7
 
mean stack mean stack mean stack mean stack
mean stack mean stack  mean stack  mean stackmean stack mean stack  mean stack  mean stack
mean stack mean stack mean stack mean stackNuttavutThongjor1
 
SOCIAL JUSTICE LESSON ON CATCH UP FRIDAY
SOCIAL JUSTICE LESSON ON CATCH UP FRIDAYSOCIAL JUSTICE LESSON ON CATCH UP FRIDAY
SOCIAL JUSTICE LESSON ON CATCH UP FRIDAYGloriaRamos83
 
The Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati RoyThe Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati RoyTrushali Dodiya
 
ACTIVIDAD DE CLASE No 1 sopa de letras.docx
ACTIVIDAD DE CLASE No 1 sopa de letras.docxACTIVIDAD DE CLASE No 1 sopa de letras.docx
ACTIVIDAD DE CLASE No 1 sopa de letras.docxMaria Lucia Céspedes
 
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfWriting Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfMr Bounab Samir
 
CapTechTalks Webinar Feb 2024 Darrell Burrell.pptx
CapTechTalks Webinar Feb 2024 Darrell Burrell.pptxCapTechTalks Webinar Feb 2024 Darrell Burrell.pptx
CapTechTalks Webinar Feb 2024 Darrell Burrell.pptxCapitolTechU
 

Recently uploaded (20)

UniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tourUniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tour
 
Intuition behind Monte Carlo Markov Chains
Intuition behind Monte Carlo Markov ChainsIntuition behind Monte Carlo Markov Chains
Intuition behind Monte Carlo Markov Chains
 
Chromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-PrincipleChromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-Principle
 
BTKi in Treatment Of Chronic Lymphocytic Leukemia
BTKi in Treatment Of Chronic Lymphocytic LeukemiaBTKi in Treatment Of Chronic Lymphocytic Leukemia
BTKi in Treatment Of Chronic Lymphocytic Leukemia
 
ICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten NotesICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten Notes
 
EDL 290F Week 1 - Meet Me at the Start Line.pdf
EDL 290F Week 1 - Meet Me at the Start Line.pdfEDL 290F Week 1 - Meet Me at the Start Line.pdf
EDL 290F Week 1 - Meet Me at the Start Line.pdf
 
Shapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley DiscussionShapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley Discussion
 
Overview of Databases and Data Modelling-2.pdf
Overview of Databases and Data Modelling-2.pdfOverview of Databases and Data Modelling-2.pdf
Overview of Databases and Data Modelling-2.pdf
 
Practical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptxPractical Research 1: Nature of Inquiry and Research.pptx
Practical Research 1: Nature of Inquiry and Research.pptx
 
Food Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in CanvasFood Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in Canvas
 
2.20.24 The March on Washington for Jobs and Freedom.pptx
2.20.24 The March on Washington for Jobs and Freedom.pptx2.20.24 The March on Washington for Jobs and Freedom.pptx
2.20.24 The March on Washington for Jobs and Freedom.pptx
 
Overview of Databases and Data Modelling-1.pdf
Overview of Databases and Data Modelling-1.pdfOverview of Databases and Data Modelling-1.pdf
Overview of Databases and Data Modelling-1.pdf
 
UniSC Fraser Coast library self-guided tour
UniSC Fraser Coast library self-guided tourUniSC Fraser Coast library self-guided tour
UniSC Fraser Coast library self-guided tour
 
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTScatch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
 
mean stack mean stack mean stack mean stack
mean stack mean stack  mean stack  mean stackmean stack mean stack  mean stack  mean stack
mean stack mean stack mean stack mean stack
 
SOCIAL JUSTICE LESSON ON CATCH UP FRIDAY
SOCIAL JUSTICE LESSON ON CATCH UP FRIDAYSOCIAL JUSTICE LESSON ON CATCH UP FRIDAY
SOCIAL JUSTICE LESSON ON CATCH UP FRIDAY
 
The Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati RoyThe Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati Roy
 
ACTIVIDAD DE CLASE No 1 sopa de letras.docx
ACTIVIDAD DE CLASE No 1 sopa de letras.docxACTIVIDAD DE CLASE No 1 sopa de letras.docx
ACTIVIDAD DE CLASE No 1 sopa de letras.docx
 
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfWriting Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
 
CapTechTalks Webinar Feb 2024 Darrell Burrell.pptx
CapTechTalks Webinar Feb 2024 Darrell Burrell.pptxCapTechTalks Webinar Feb 2024 Darrell Burrell.pptx
CapTechTalks Webinar Feb 2024 Darrell Burrell.pptx
 

AI Product Manager

  • 1. Martin Szugat @ Digital Product School on 10/22/2020 AI Product Manager
  • 2. Agenda Overview over the AI product innovation cycle00:15 AI Thinking: ideating and prioritizing the right use cases00:30 AI Prototyping: testing critical hypotheses with experiments00:45 AI Engineering: building scalable & user friendly AI applications01:00 AI Management: maintaining AI solutions with DataOps01:15 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45 Welcoming: introduction & agenda00:00
  • 4. 4 1996-2008 IT-Consultant, Author and Software Developer Study and Research of Bioinformatics (Data Science) 2001-2008 Managing Director & Shareholder of SnipClip GmbH (Marketing Agency) 2008-2013 Program Director of the Predictive Analytics World & Deep Learning World (Conference Series) 2014-dato Managing Director & Founder of Datentreiber GmbH (Consultancy) 2014-dato Advisory Board for Media & IT for DDG AG (AI Company Builder) 2020-dato Martin Szugat Shareholder of Digitaltreiber GmbH (Recruitment Agency) 2016-dato Chief Data Officer & Shareholder of 42AI GmbH (AI Market Network) 2018-dato
  • 5. 5
  • 6. Agenda Welcoming: introduction & agenda00:00 Overview over the AI product innovation cycle00:15 AI Thinking: ideating and prioritizing the right use cases00:30 AI Prototyping: testing critical hypotheses with experiments00:45 AI Engineering: building scalable & user friendly AI applications01:00 AI Management: maintaining AI solutions with DataOps01:15 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45
  • 7. Agenda Welcoming: introduction & agenda00:00 AI Thinking: ideating and prioritizing the right use cases00:30 AI Prototyping: testing critical hypotheses with experiments00:45 AI Engineering: building scalable & user friendly AI applications01:00 AI Management: maintaining AI solutions with DataOps01:15 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45 Overview over the AI product innovation cycle00:15
  • 9. 10 Data ProductAnalyticsData x = What is a data product?
  • 10. What is an AI (Data + Analytics) Strategy? Accessible Data AI Use Cases Company’s Objectives Data / AI Products with a Business Case
  • 11. Collection of Analytics Use Cases (Problem, Solution, Benefit) Roadmap for Data-Driven Business Cases (Costs, Risks, Profits) Assumptions (Analytical, Economical, …) Learnings (Data, Business, User, …) Business Value (Information → Decision → Action → Impact → Objective) Data Sources (Collection, Acquisition, …) Data Thinking Data Mining Data Engineering Data Management Data Strategy Data Prototypes Data Product Data SourcesData AssetsData Product Innovation Cycle
  • 12. Data Management Data Engineering Data Mining Data Thinking Data, Model & Product Management Data, Software & UI Engineering Data Mining & User Experiments Data & Design Thinking 2. User Under- standing (Desirability) 3. Data Under- standing (Feasibility) 1. Business Under- standing (Viability) 2. Modelling & Visualization 3. Evaluation 1. Data Exploration & Preparation 3. Learn 1. Build 2. Measure 3. Monitor 1. Deploy 2. Orchestrate CRISP-DM Design Thinking Proof of Concept (PoC)? Proof of Value (PoV)? Lean Develop- ment DataOps
  • 13. Data, Model & Product Management Operating Data, Software & UI Engineering Engineering Data & Design Thinking Data Mining & User Experiments Designing Experiment-ing Data LabData Factory ➔ Exploration to Learn ➔ Exploitation to Earn
  • 14. 15 Designing Experiment-ingEngineering Operating Data Strategist, AI Translator, … Canvas, Mockups, … Design Thinking, Sprints … Data Scientist, UX Designer, … Data Analytics, Modelling, … CRISP-DM, Kanban, … Data Steward, Product Manager, … Monitoring, Audits, … DataOps, SPC, … Data Engineer, Developer, … Cloud, MapReduce, … Scrum, Lean … Skills, Tools & Methods
  • 15. 16 Designing Experiment-ingEngineering Operating Data Strategist, AI Translator, … Canvas, Mockups, … Design Thinking, Sprints … Data Scientist, UX Designer, … Data Analytics, Modelling, … CRISP-DM, Kanban, … Data Steward, Product Manager, … Monitoring, Audits, … DataOps, SPC, … Data Engineer, Developer, … Cloud, MapReduce, … Scrum, Lean … AI Product Manager
  • 16. Agenda Welcoming: introduction & agenda00:00 Overview over the AI product innovation cycle00:15 AI Prototyping: testing critical hypotheses with experiments00:45 AI Engineering: building scalable & user friendly AI applications01:00 AI Management: maintaining AI solutions with DataOps01:15 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45 AI Thinking: ideating and prioritizing the right use cases00:30
  • 17. Holy Grail Use Cases Everybody wants it. Nobody has it. Some claim to have it.
  • 18. Moonshots 4% of the US state budget was invested in the Apollo program.
  • 19. Lighthouse Use Cases If you head for the lighthouse, you'll probably shipwreck.
  • 20. Pet Projects Bosses are usually furthest away from the actions and thus the relevant information.
  • 21. Boring is the new Sexy. Look for use cases that sound boring because they often are very subject-specific.
  • 22. Delegate Form Check Stake- holders on board Business Plan Check Proof of Concept (PoC) Integration Tests Proof of Value (PoV) Ideas Use Cases (Drafts) Business Cases (Concepts) Prototypes Releases MVDP * Meet-ing Work- shop Designing Experimenting Engineering Operating Use Case Ideation & Prioritization Process Count Effort ? Backlog * MVP: Minimum Viable (Data) Product Data (Product Design) Sprints (Agile) Develop-ment Sprints
  • 23. From Use Cases to Business Cases User Under- standing Business Under- standing Data Under- standing Users Problems Solutions Benefits ? Use Cases Costs Risks Profits Business Cases ? Object- ives Results Actions Decisions ? Diverge Converge Diverge Converge Diverge Converge Viability Desirability Feasibility
  • 24. 1st Day: Overview of Actual Status & Outlook on Target Status. 2nd Day: In-depth Look & Check into the Details.
  • 25. Martin Szugat & Martijn Baker @ Data Brain Meetup: ➔ https://www.slideshare.net/Datentreiber/presentations ➔ https://www.youtube.com/watch?v=U8EbR2gnl_o Data Strategy Design: An Open Source Toolbox & Method for Data Thinking
  • 26. Agenda Welcoming: introduction & agenda00:00 Overview over the AI product innovation cycle00:15 AI Thinking: ideating and prioritizing the right use cases00:30 AI Engineering: building scalable & user friendly AI applications01:00 AI Management: maintaining AI solutions with DataOps01:15 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45 AI Prototyping: testing critical hypotheses with experiments00:45
  • 27. Cross Industry Standard Process for Data Mining https://en.wikipedia.org/wiki/Cross_Industry_Sta ndard_Process_for_Data_Mining LEARN BUILD MEASURE
  • 31. Assum- ption A demand forecast of accuracy x% will decrease out of stock situations by y% and thus save the company z% euros per year. 12/2020 Martin Szugat 2 Month Build a simple machine learning model and test it with n users (demand planners). Model performance as RMSE as well as business performance as OoS delta rate. Prediction Performance RMSE < e.g. current estimation OoS rate > -10% → Saved costs per year = 1M € ➔ Positive estimated ROI for project
  • 35. Assum- ption Business performance doesn’t scale with model performance 10.12.2020 Martin Szugat A better demand forecast prediction will reduce out of stock situations. That even if the RSME is improved by 10% the OoS rate is only decreased by 2%. Model performance and business performance doesn’t scale the same level. Test other machine learning approaches to improve RSME by x%.
  • 41. Hypothesis, Experiments & Learnings Database (HELD): ➔ https://dtbr.de/held
  • 42. Agenda Welcoming: introduction & agenda00:00 Overview over the AI product innovation cycle00:15 AI Thinking: ideating and prioritizing the right use cases00:30 AI Prototyping: testing critical hypotheses with experiments00:45 AI Management: maintaining AI solutions with DataOps01:15 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45 AI Engineering: building scalable & user friendly AI applications01:00
  • 43. PoC Trap • Data & technology faith • “Throwing over the fences” phenomena • “Not thought through to the end” mindset
  • 44. Value Pipeline Business Value Analytics in Production Data Sources PoC Concept Idea InnovationPipeline Exploration vs. Exploitation / Learn vs. Earn Operation: Maintain Innovation: Change Clash of Interests & Culture!
  • 46. Experiment vs. Test Source: https://medium.com/data-ops/dataops-is-not-just-devops-for-data-6e03083157b7 Test Experiment
  • 47. 48 Exploration Stage Gold Standard Data Sets Analytics in Production Data Lakeland Validation Stage: Real World Data Sets Production Stage “Real Time” Data Sets Moni- toring Analytics in Development Analytics in Experimentation Frequent Exports Sporadic Exports Sandboxes
  • 48. 49 Testing. Testing. Testing. Source: https://martinfowler.com/articles/cd4ml.html
  • 49. 50 Continuous Deployment & Integration Source: https://martinfowler.com/articles/cd4ml.html
  • 50. Agenda Welcoming: introduction & agenda00:00 Overview over the AI product innovation cycle00:15 AI Thinking: ideating and prioritizing the right use cases00:30 AI Prototyping: testing critical hypotheses with experiments00:45 AI Engineering: building scalable & user friendly AI applications01:00 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45 AI Management: maintaining AI solutions with DataOps01:15
  • 53. You build it. You fix it.
  • 54. Designing Experiment-ingEngineering Operating DataOps You design it. You test it. You build it. You fix it. Data Strategists Data Scientists Data Engineers Data Stewards
  • 55. 56 DataOps is NOT Just DevOps for Data Source: https://medium.com/data-ops/dataops-is-not-just-devops-for-data-6e03083157b7
  • 56. Eat your own dog food: analytics for analytics.
  • 58. Agenda Welcoming: introduction & agenda00:00 Overview over the AI product innovation cycle00:15 AI Thinking: ideating and prioritizing the right use cases00:30 AI Prototyping: testing critical hypotheses with experiments00:45 AI Engineering: building scalable & user friendly AI applications01:00 AI Management: maintaining AI solutions with DataOps01:15 Q&A01:45 Outlook: how to become an AI product manager (links & more)01:30
  • 59. Non-Linear Data Product Innovation Process (Cycle of Cycles) Designing Engineering Operating 5Prototypes 20Concepts 3Products 100Ideas 1System Experiment- ing Unit Data Strategy Data Lab Data Factory Data Operations Back to Backlog Back to Backlog PoC PoV Tests AI Product Manager
  • 60. Raw Data Clean Data Value Pipeline Anomaly Detection PoC Concept Idea InnovationPipeline XYZ Prediction PoC Concept Idea InnovationPipeline Business Value Data & Analytics Pipelines
  • 62. … to a Data Industry.
  • 63. AI Product Manager Analytical Technical Business Design Thinking Product Design & Management DataOps Scrum / Kanban Data & Software Architecture Data Management & Governance Machine Learning Statistics CRISP-DM AI Governance Business Analyses Data Visualization & Storytelling Soft Skills: Moderation, Mediation, Negotiation, .. CI / CD DevOps UI / UX Lean Management
  • 64. 65 Further literature 1. Data Strategy & Data Thinking 1. Design thinking for data products 2. Data Strategy: Good Data vs. Bad Data 3. How to Define and Execute Your Data and AI Strategy 4. See next slide 2. Data Science Development Process: 1. Data Science at Roche: From Exploration to Productionization 2. Data Science Development Lifecycle 3. DataOps / ModelOps / AIOps 1. DataOps is NOT Just DevOps for Data 2. The DataOps Cookbook 3. Introducing ModelOps To Operationalize AI 4. Monitoring Machine Learning Models in Production 5. Continuous Delivery for Machine Learning 4. AI Product Management 1. A step-by-step guide to becoming a Data Product Manager 2. Managing Data Science as Products 3. What you need to know about product management for AI 4. Practical Skills for The AI Product Manager 5. Bringing an AI Product to Market 5. Other 1. The New Business of AI (and How It’s Different From Traditional Software) 2. When is AI not AI?
  • 65. Get started. • Designkit: http://dtbr.de/designkit • LinkedIn Group: http://dtbr.de/data-thinker • Video training: http://dtbr.de/ddm • Interactive trainings: http://dtbr.de/training • News: http://dtbr.de/twitter • Presentations: http://dtbr.de/slideshare • More: https://www.datentreiber.de
  • 67. Agenda Welcoming: introduction & agenda00:00 Overview over the AI product innovation cycle00:15 AI Thinking: ideating and prioritizing the right use cases00:30 AI Prototyping: testing critical hypotheses with experiments00:45 AI Engineering: building scalable & user friendly AI applications01:00 AI Management: maintaining AI solutions with DataOps01:15 Outlook: how to become an AI product manager (links & more)01:30 Q&A01:45
  • 69. datentreiber.deWir treiben Ihr Unternehmen voran. Web: www.datentreiber.de Blog: www.datentreiber.de/blog/ Martin Szugat Geschäftsführer Telefon: +49 [0]881 12 88 46 53 Email: ms@datentreiber.de