SlideShare a Scribd company logo

MLOps – Applying DevOps to Competitive Advantage

MLOps is a practice for collaboration between Data Science and operations to manage the production machine learning (ML) lifecycles. As an amalgamation of “machine learning” and “operations,” MLOps applies DevOps principles to ML delivery, enabling the delivery of ML-based innovation at scale to result in: Faster time to market of ML-based solutions More rapid rate of experimentation, driving innovation Assurance of quality, trustworthiness, and ethical AI MLOps is essential for scaling ML. Without it, enterprises risk struggling with costly overhead and stalled progress. Several vendors have emerged with offerings to support MLOps: the major offerings are Microsoft Azure ML and Google Vertex AI. We looked at these offerings from the perspective of enterprise features and time-to-value.

1 of 40
Download to read offline
MLOps: Applying DevOps to
Competitive Advantage
Presented by: William McKnight
President, McKnight Consulting Group
linkedin.com/in/wmcknight
www.mcknightcg.com
(214) 514-1444
8th December, 2022
Put AI Into Action And Boost
Productivity with MLOps
Abhilash Mula
Senior Manager, Product Management
2 © Informatica. Proprietary and Confidential.
New World of Cloud AI & Analytics
Situation: Unprecedented volume/type of data, on multiple clouds, leveraged by
multiple user profiles, with exploding AI/ML usage
500
million
business
data users
64.2
zettabytes
of data
per year
1 billion
workers
assisted
by AI/ML
80% of
organizations
store data in
multi-hybrid
Data in the Multi
Cloud, Hybrid
46
billion
connected
devices
New
Users
Machine
Learning/AI
New Data Types
(mobile, social, IoT)
Explosion in
Data Volume
3 © Informatica. Proprietary and Confidential.
Data Management Challenges Are Derailing AI &
Analytics Initiatives
Cost Overruns
75% of organizations using
cloud data management
will encounter budget
overruns resulting in their
questioning the value of
using cloud services
Resource Constraints
96% of IT and engineering
decision-makers say no-
code/low-code will be a
priority because of the lack
of software engineers
Complexity
72% of organizations
are still struggling to
operationalize within
their enterprise
96% 75% 72%
Source: 1– Aptum cloud impact study | 2– Advanced Global Research, May 28, 2020 | 3- Venturebbeat.
4 © Informatica. Proprietary and Confidential.
AI/ML Projects Rarely Make It into Production
Only 1% of
AI/ML projects
are successful
*Source: Databricks research 2018
5 © Informatica. Proprietary and Confidential.
MLOps Streamlines the Development,
Operationalization, and Execution of AI/ML Models
MLOps covers all the key phases of AI/ML
Prepare Data Build Model Deploy, Consume
and Monitor
Understanding the
objectives and
requirements of the
project and preparing
the data needed for
the model.
Build and assess
various models
based on a variety of
different modeling
techniques.
Operationalize and
monitor the models
to deliver business
value and
performance.

Recommended

MLOps Virtual Event: Automating ML at Scale
MLOps Virtual Event: Automating ML at ScaleMLOps Virtual Event: Automating ML at Scale
MLOps Virtual Event: Automating ML at ScaleDatabricks
 
MLOps - The Assembly Line of ML
MLOps - The Assembly Line of MLMLOps - The Assembly Line of ML
MLOps - The Assembly Line of MLJordan Birdsell
 
Ml ops intro session
Ml ops   intro sessionMl ops   intro session
Ml ops intro sessionAvinash Patil
 
ML-Ops how to bring your data science to production
ML-Ops  how to bring your data science to productionML-Ops  how to bring your data science to production
ML-Ops how to bring your data science to productionHerman Wu
 
Apply MLOps at Scale by H&M
Apply MLOps at Scale by H&MApply MLOps at Scale by H&M
Apply MLOps at Scale by H&MDatabricks
 
MLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionMLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionProvectus
 
What’s New with Databricks Machine Learning
What’s New with Databricks Machine LearningWhat’s New with Databricks Machine Learning
What’s New with Databricks Machine LearningDatabricks
 

More Related Content

What's hot

MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.Knoldus Inc.
 
Ml ops past_present_future
Ml ops past_present_futureMl ops past_present_future
Ml ops past_present_futureNisha Talagala
 
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...Edge AI and Vision Alliance
 
Databricks Overview for MLOps
Databricks Overview for MLOpsDatabricks Overview for MLOps
Databricks Overview for MLOpsDatabricks
 
MLOps with Azure DevOps
MLOps with Azure DevOpsMLOps with Azure DevOps
MLOps with Azure DevOpsMarco Parenzan
 
From Data Science to MLOps
From Data Science to MLOpsFrom Data Science to MLOps
From Data Science to MLOpsCarl W. Handlin
 
MLOps by Sasha Rosenbaum
MLOps by Sasha RosenbaumMLOps by Sasha Rosenbaum
MLOps by Sasha RosenbaumSasha Rosenbaum
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflowDatabricks
 
Google Vertex AI
Google Vertex AIGoogle Vertex AI
Google Vertex AIVikasBisoi
 
Using MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOpsUsing MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOpsWeaveworks
 
CI/DC in MLOps by J.B. Hunt
CI/DC in MLOps by J.B. HuntCI/DC in MLOps by J.B. Hunt
CI/DC in MLOps by J.B. HuntDatabricks
 
Managing the Machine Learning Lifecycle with MLOps
Managing the Machine Learning Lifecycle with MLOpsManaging the Machine Learning Lifecycle with MLOps
Managing the Machine Learning Lifecycle with MLOpsFatih Baltacı
 
Modernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureModernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureDatabricks
 
Introducing Databricks Delta
Introducing Databricks DeltaIntroducing Databricks Delta
Introducing Databricks DeltaDatabricks
 
Feature Store as a Data Foundation for Machine Learning
Feature Store as a Data Foundation for Machine LearningFeature Store as a Data Foundation for Machine Learning
Feature Store as a Data Foundation for Machine LearningProvectus
 

What's hot (20)

MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.MLOps Bridging the gap between Data Scientists and Ops.
MLOps Bridging the gap between Data Scientists and Ops.
 
Machine Learning Operations & Azure
Machine Learning Operations & AzureMachine Learning Operations & Azure
Machine Learning Operations & Azure
 
Ml ops past_present_future
Ml ops past_present_futureMl ops past_present_future
Ml ops past_present_future
 
MLOps.pptx
MLOps.pptxMLOps.pptx
MLOps.pptx
 
MLOps for production-level machine learning
MLOps for production-level machine learningMLOps for production-level machine learning
MLOps for production-level machine learning
 
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
“MLOps: Managing Data and Workflows for Efficient Model Development and Deplo...
 
Databricks Overview for MLOps
Databricks Overview for MLOpsDatabricks Overview for MLOps
Databricks Overview for MLOps
 
MLOps with Azure DevOps
MLOps with Azure DevOpsMLOps with Azure DevOps
MLOps with Azure DevOps
 
From Data Science to MLOps
From Data Science to MLOpsFrom Data Science to MLOps
From Data Science to MLOps
 
MLOps by Sasha Rosenbaum
MLOps by Sasha RosenbaumMLOps by Sasha Rosenbaum
MLOps by Sasha Rosenbaum
 
What is MLOps
What is MLOpsWhat is MLOps
What is MLOps
 
MLOps Using MLflow
MLOps Using MLflowMLOps Using MLflow
MLOps Using MLflow
 
MLOps with Kubeflow
MLOps with Kubeflow MLOps with Kubeflow
MLOps with Kubeflow
 
Google Vertex AI
Google Vertex AIGoogle Vertex AI
Google Vertex AI
 
Using MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOpsUsing MLOps to Bring ML to Production/The Promise of MLOps
Using MLOps to Bring ML to Production/The Promise of MLOps
 
CI/DC in MLOps by J.B. Hunt
CI/DC in MLOps by J.B. HuntCI/DC in MLOps by J.B. Hunt
CI/DC in MLOps by J.B. Hunt
 
Managing the Machine Learning Lifecycle with MLOps
Managing the Machine Learning Lifecycle with MLOpsManaging the Machine Learning Lifecycle with MLOps
Managing the Machine Learning Lifecycle with MLOps
 
Modernizing to a Cloud Data Architecture
Modernizing to a Cloud Data ArchitectureModernizing to a Cloud Data Architecture
Modernizing to a Cloud Data Architecture
 
Introducing Databricks Delta
Introducing Databricks DeltaIntroducing Databricks Delta
Introducing Databricks Delta
 
Feature Store as a Data Foundation for Machine Learning
Feature Store as a Data Foundation for Machine LearningFeature Store as a Data Foundation for Machine Learning
Feature Store as a Data Foundation for Machine Learning
 

Similar to MLOps – Applying DevOps to Competitive Advantage

Experimentation to Industrialization: Implementing MLOps
Experimentation to Industrialization: Implementing MLOpsExperimentation to Industrialization: Implementing MLOps
Experimentation to Industrialization: Implementing MLOpsDatabricks
 
Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...
Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...
Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...Databricks
 
DutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive SectorDutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive SectorBigML, Inc
 
Accelerating Machine Learning as a Service with Automated Feature Engineering
Accelerating Machine Learning as a Service with Automated Feature EngineeringAccelerating Machine Learning as a Service with Automated Feature Engineering
Accelerating Machine Learning as a Service with Automated Feature EngineeringCognizant
 
ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...
ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...
ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...DATAVERSITY
 
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...Lviv Startup Club
 
Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?Itai Yaffe
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowLviv Startup Club
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowEdunomica
 
Google Cloud Machine Learning
 Google Cloud Machine Learning  Google Cloud Machine Learning
Google Cloud Machine Learning India Quotient
 
How to add security in dataops and devops
How to add security in dataops and devopsHow to add security in dataops and devops
How to add security in dataops and devopsUlf Mattsson
 
2022 Trends in Enterprise Analytics
2022 Trends in Enterprise Analytics2022 Trends in Enterprise Analytics
2022 Trends in Enterprise AnalyticsDATAVERSITY
 
Data Analytics in Digital Transformation
Data Analytics in Digital TransformationData Analytics in Digital Transformation
Data Analytics in Digital TransformationMukund Babbar
 
ADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced Analytics
ADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced AnalyticsADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced Analytics
ADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced AnalyticsDATAVERSITY
 
ADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture MaturityADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture MaturityDATAVERSITY
 
Mark Willemse - Strategy & Deployment Journey
Mark Willemse - Strategy & Deployment JourneyMark Willemse - Strategy & Deployment Journey
Mark Willemse - Strategy & Deployment JourneyIBM Sverige
 
TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...
TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...
TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...Vasu S
 
Platforming the Major Analytic Use Cases for Modern Engineering
Platforming the Major Analytic Use Cases for Modern EngineeringPlatforming the Major Analytic Use Cases for Modern Engineering
Platforming the Major Analytic Use Cases for Modern EngineeringDATAVERSITY
 
Revolutionizing Software Development: The Power of MLOps!
Revolutionizing Software Development: The Power of MLOps!Revolutionizing Software Development: The Power of MLOps!
Revolutionizing Software Development: The Power of MLOps!Veritis Group, Inc
 

Similar to MLOps – Applying DevOps to Competitive Advantage (20)

Experimentation to Industrialization: Implementing MLOps
Experimentation to Industrialization: Implementing MLOpsExperimentation to Industrialization: Implementing MLOps
Experimentation to Industrialization: Implementing MLOps
 
Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...
Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...
Operationalizing Edge Machine Learning with Apache Spark with Nisha Talagala ...
 
DutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive SectorDutchMLSchool. ML for Energy Trading and Automotive Sector
DutchMLSchool. ML for Energy Trading and Automotive Sector
 
Accelerating Machine Learning as a Service with Automated Feature Engineering
Accelerating Machine Learning as a Service with Automated Feature EngineeringAccelerating Machine Learning as a Service with Automated Feature Engineering
Accelerating Machine Learning as a Service with Automated Feature Engineering
 
ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...
ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...
ADV Slides: What the Aspiring or New Data Scientist Needs to Know About the E...
 
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
Mykola Mykytenko: MLOps: your way from nonsense to valuable effect (approache...
 
Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?Why do the majority of Data Science projects never make it to production?
Why do the majority of Data Science projects never make it to production?
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with Kubeflow
 
Mohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with KubeflowMohamed Sabri: Operationalize machine learning with Kubeflow
Mohamed Sabri: Operationalize machine learning with Kubeflow
 
Manufactures whats keeping you up
Manufactures   whats keeping you upManufactures   whats keeping you up
Manufactures whats keeping you up
 
Google Cloud Machine Learning
 Google Cloud Machine Learning  Google Cloud Machine Learning
Google Cloud Machine Learning
 
How to add security in dataops and devops
How to add security in dataops and devopsHow to add security in dataops and devops
How to add security in dataops and devops
 
2022 Trends in Enterprise Analytics
2022 Trends in Enterprise Analytics2022 Trends in Enterprise Analytics
2022 Trends in Enterprise Analytics
 
Data Analytics in Digital Transformation
Data Analytics in Digital TransformationData Analytics in Digital Transformation
Data Analytics in Digital Transformation
 
ADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced Analytics
ADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced AnalyticsADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced Analytics
ADV Slides: What Happened of Note in 1H 2020 in Enterprise Advanced Analytics
 
ADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture MaturityADV Slides: How to Improve Your Analytic Data Architecture Maturity
ADV Slides: How to Improve Your Analytic Data Architecture Maturity
 
Mark Willemse - Strategy & Deployment Journey
Mark Willemse - Strategy & Deployment JourneyMark Willemse - Strategy & Deployment Journey
Mark Willemse - Strategy & Deployment Journey
 
TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...
TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...
TDWI Checklist - The Automation and Optimization of Advanced Analytics Based ...
 
Platforming the Major Analytic Use Cases for Modern Engineering
Platforming the Major Analytic Use Cases for Modern EngineeringPlatforming the Major Analytic Use Cases for Modern Engineering
Platforming the Major Analytic Use Cases for Modern Engineering
 
Revolutionizing Software Development: The Power of MLOps!
Revolutionizing Software Development: The Power of MLOps!Revolutionizing Software Development: The Power of MLOps!
Revolutionizing Software Development: The Power of MLOps!
 

More from DATAVERSITY

Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...
Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...
Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...DATAVERSITY
 
Data at the Speed of Business with Data Mastering and Governance
Data at the Speed of Business with Data Mastering and GovernanceData at the Speed of Business with Data Mastering and Governance
Data at the Speed of Business with Data Mastering and GovernanceDATAVERSITY
 
Exploring Levels of Data Literacy
Exploring Levels of Data LiteracyExploring Levels of Data Literacy
Exploring Levels of Data LiteracyDATAVERSITY
 
Building a Data Strategy – Practical Steps for Aligning with Business Goals
Building a Data Strategy – Practical Steps for Aligning with Business GoalsBuilding a Data Strategy – Practical Steps for Aligning with Business Goals
Building a Data Strategy – Practical Steps for Aligning with Business GoalsDATAVERSITY
 
Make Data Work for You
Make Data Work for YouMake Data Work for You
Make Data Work for YouDATAVERSITY
 
Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?DATAVERSITY
 
Data Catalogs Are the Answer – What Is the Question?
Data Catalogs Are the Answer – What Is the Question?Data Catalogs Are the Answer – What Is the Question?
Data Catalogs Are the Answer – What Is the Question?DATAVERSITY
 
Data Modeling Fundamentals
Data Modeling FundamentalsData Modeling Fundamentals
Data Modeling FundamentalsDATAVERSITY
 
Showing ROI for Your Analytic Project
Showing ROI for Your Analytic ProjectShowing ROI for Your Analytic Project
Showing ROI for Your Analytic ProjectDATAVERSITY
 
How a Semantic Layer Makes Data Mesh Work at Scale
How a Semantic Layer Makes  Data Mesh Work at ScaleHow a Semantic Layer Makes  Data Mesh Work at Scale
How a Semantic Layer Makes Data Mesh Work at ScaleDATAVERSITY
 
Is Enterprise Data Literacy Possible?
Is Enterprise Data Literacy Possible?Is Enterprise Data Literacy Possible?
Is Enterprise Data Literacy Possible?DATAVERSITY
 
The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...
The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...
The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...DATAVERSITY
 
Emerging Trends in Data Architecture – What’s the Next Big Thing?
Emerging Trends in Data Architecture – What’s the Next Big Thing?Emerging Trends in Data Architecture – What’s the Next Big Thing?
Emerging Trends in Data Architecture – What’s the Next Big Thing?DATAVERSITY
 
Data Governance Trends - A Look Backwards and Forwards
Data Governance Trends - A Look Backwards and ForwardsData Governance Trends - A Look Backwards and Forwards
Data Governance Trends - A Look Backwards and ForwardsDATAVERSITY
 
Data Governance Trends and Best Practices To Implement Today
Data Governance Trends and Best Practices To Implement TodayData Governance Trends and Best Practices To Implement Today
Data Governance Trends and Best Practices To Implement TodayDATAVERSITY
 
2023 Trends in Enterprise Analytics
2023 Trends in Enterprise Analytics2023 Trends in Enterprise Analytics
2023 Trends in Enterprise AnalyticsDATAVERSITY
 
Who Should Own Data Governance – IT or Business?
Who Should Own Data Governance – IT or Business?Who Should Own Data Governance – IT or Business?
Who Should Own Data Governance – IT or Business?DATAVERSITY
 
Data Management Best Practices
Data Management Best PracticesData Management Best Practices
Data Management Best PracticesDATAVERSITY
 
Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...
Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...
Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...DATAVERSITY
 
Empowering the Data Driven Business with Modern Business Intelligence
Empowering the Data Driven Business with Modern Business IntelligenceEmpowering the Data Driven Business with Modern Business Intelligence
Empowering the Data Driven Business with Modern Business IntelligenceDATAVERSITY
 

More from DATAVERSITY (20)

Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...
Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...
Architecture, Products, and Total Cost of Ownership of the Leading Machine Le...
 
Data at the Speed of Business with Data Mastering and Governance
Data at the Speed of Business with Data Mastering and GovernanceData at the Speed of Business with Data Mastering and Governance
Data at the Speed of Business with Data Mastering and Governance
 
Exploring Levels of Data Literacy
Exploring Levels of Data LiteracyExploring Levels of Data Literacy
Exploring Levels of Data Literacy
 
Building a Data Strategy – Practical Steps for Aligning with Business Goals
Building a Data Strategy – Practical Steps for Aligning with Business GoalsBuilding a Data Strategy – Practical Steps for Aligning with Business Goals
Building a Data Strategy – Practical Steps for Aligning with Business Goals
 
Make Data Work for You
Make Data Work for YouMake Data Work for You
Make Data Work for You
 
Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?Data Catalogs Are the Answer – What is the Question?
Data Catalogs Are the Answer – What is the Question?
 
Data Catalogs Are the Answer – What Is the Question?
Data Catalogs Are the Answer – What Is the Question?Data Catalogs Are the Answer – What Is the Question?
Data Catalogs Are the Answer – What Is the Question?
 
Data Modeling Fundamentals
Data Modeling FundamentalsData Modeling Fundamentals
Data Modeling Fundamentals
 
Showing ROI for Your Analytic Project
Showing ROI for Your Analytic ProjectShowing ROI for Your Analytic Project
Showing ROI for Your Analytic Project
 
How a Semantic Layer Makes Data Mesh Work at Scale
How a Semantic Layer Makes  Data Mesh Work at ScaleHow a Semantic Layer Makes  Data Mesh Work at Scale
How a Semantic Layer Makes Data Mesh Work at Scale
 
Is Enterprise Data Literacy Possible?
Is Enterprise Data Literacy Possible?Is Enterprise Data Literacy Possible?
Is Enterprise Data Literacy Possible?
 
The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...
The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...
The Data Trifecta – Privacy, Security & Governance Race from Reactivity to Re...
 
Emerging Trends in Data Architecture – What’s the Next Big Thing?
Emerging Trends in Data Architecture – What’s the Next Big Thing?Emerging Trends in Data Architecture – What’s the Next Big Thing?
Emerging Trends in Data Architecture – What’s the Next Big Thing?
 
Data Governance Trends - A Look Backwards and Forwards
Data Governance Trends - A Look Backwards and ForwardsData Governance Trends - A Look Backwards and Forwards
Data Governance Trends - A Look Backwards and Forwards
 
Data Governance Trends and Best Practices To Implement Today
Data Governance Trends and Best Practices To Implement TodayData Governance Trends and Best Practices To Implement Today
Data Governance Trends and Best Practices To Implement Today
 
2023 Trends in Enterprise Analytics
2023 Trends in Enterprise Analytics2023 Trends in Enterprise Analytics
2023 Trends in Enterprise Analytics
 
Who Should Own Data Governance – IT or Business?
Who Should Own Data Governance – IT or Business?Who Should Own Data Governance – IT or Business?
Who Should Own Data Governance – IT or Business?
 
Data Management Best Practices
Data Management Best PracticesData Management Best Practices
Data Management Best Practices
 
Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...
Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...
Keeping the Pulse of Your Data – Why You Need Data Observability to Improve D...
 
Empowering the Data Driven Business with Modern Business Intelligence
Empowering the Data Driven Business with Modern Business IntelligenceEmpowering the Data Driven Business with Modern Business Intelligence
Empowering the Data Driven Business with Modern Business Intelligence
 

Recently uploaded

Artificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptxArtificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptxVighnesh Shashtri
 
AWS Identity and access management for users
AWS Identity and access management for usersAWS Identity and access management for users
AWS Identity and access management for usersStephenEfange3
 
Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)CUO VEERANAN VEERANAN
 
Tips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data GoalsTips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data GoalsDataArchiva
 
SABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as referenceSABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as referencepriyansabari355
 
Lies and Myths in InfoSec - 2023 Usenix Enigma
Lies and Myths in InfoSec - 2023 Usenix EnigmaLies and Myths in InfoSec - 2023 Usenix Enigma
Lies and Myths in InfoSec - 2023 Usenix EnigmaAdrian Sanabria
 
data analytics and tools from in2inglobal.pdf
data analytics  and tools from in2inglobal.pdfdata analytics  and tools from in2inglobal.pdf
data analytics and tools from in2inglobal.pdfdigimartfamily
 
ppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptxppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptxHizkiaJastis
 
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdfIIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdfAustraliaChapterIIBA
 
SABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a referenceSABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a referencepriyansabari355
 
Industry 4.0 in IoT Transforming the Future.pptx
Industry 4.0 in IoT Transforming the Future.pptxIndustry 4.0 in IoT Transforming the Future.pptx
Industry 4.0 in IoT Transforming the Future.pptxMdRafiqulIslam403212
 
What is the value of your Data v3.0.pptx
What is the value of your Data v3.0.pptxWhat is the value of your Data v3.0.pptx
What is the value of your Data v3.0.pptxJose Briones
 
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...Cyber Security Experts
 
A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)UNCResearchHub
 
Operations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample ScreensOperations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample ScreensKondapi V Siva Rama Brahmam
 
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...Thibaud Le Douarin
 
Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023stephizcoolio
 

Recently uploaded (18)

Artificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptxArtificial Intelligence and its Impact on Society.pptx
Artificial Intelligence and its Impact on Society.pptx
 
AWS Identity and access management for users
AWS Identity and access management for usersAWS Identity and access management for users
AWS Identity and access management for users
 
Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)Big Data - large Scale data (Amazon, FB)
Big Data - large Scale data (Amazon, FB)
 
Tips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data GoalsTips to Align with Your Salesforce Data Goals
Tips to Align with Your Salesforce Data Goals
 
SABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as referenceSABARI PRIYAN's self introduction as reference
SABARI PRIYAN's self introduction as reference
 
Lies and Myths in InfoSec - 2023 Usenix Enigma
Lies and Myths in InfoSec - 2023 Usenix EnigmaLies and Myths in InfoSec - 2023 Usenix Enigma
Lies and Myths in InfoSec - 2023 Usenix Enigma
 
data analytics and tools from in2inglobal.pdf
data analytics  and tools from in2inglobal.pdfdata analytics  and tools from in2inglobal.pdf
data analytics and tools from in2inglobal.pdf
 
ppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptxppt penjualan berbasis online omset.pptx
ppt penjualan berbasis online omset.pptx
 
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdfIIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
IIBA Adl - Being Effective on Day 1 - Slide Deck.pdf
 
SABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a referenceSABARI PRIYAN's self introduction as a reference
SABARI PRIYAN's self introduction as a reference
 
Industry 4.0 in IoT Transforming the Future.pptx
Industry 4.0 in IoT Transforming the Future.pptxIndustry 4.0 in IoT Transforming the Future.pptx
Industry 4.0 in IoT Transforming the Future.pptx
 
Electricity Year 2023_updated_22022024.pptx
Electricity Year 2023_updated_22022024.pptxElectricity Year 2023_updated_22022024.pptx
Electricity Year 2023_updated_22022024.pptx
 
What is the value of your Data v3.0.pptx
What is the value of your Data v3.0.pptxWhat is the value of your Data v3.0.pptx
What is the value of your Data v3.0.pptx
 
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
Web 3.0 in Data Privacy and Security | Data Privacy |Blockchain Security| Cyb...
 
A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)A Gentle Introduction to Text Analysis :)
A Gentle Introduction to Text Analysis :)
 
Operations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample ScreensOperations Data On Mobile - inSis Mobile App - Sample Screens
Operations Data On Mobile - inSis Mobile App - Sample Screens
 
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
Generative AI Rennes Meetup with OVHcloud - WAICF highlights & how to deploy ...
 
Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023Soil Health Policy Map Years 2020 to 2023
Soil Health Policy Map Years 2020 to 2023
 

MLOps – Applying DevOps to Competitive Advantage

  • 1. MLOps: Applying DevOps to Competitive Advantage Presented by: William McKnight President, McKnight Consulting Group linkedin.com/in/wmcknight www.mcknightcg.com (214) 514-1444
  • 2. 8th December, 2022 Put AI Into Action And Boost Productivity with MLOps Abhilash Mula Senior Manager, Product Management
  • 3. 2 © Informatica. Proprietary and Confidential. New World of Cloud AI & Analytics Situation: Unprecedented volume/type of data, on multiple clouds, leveraged by multiple user profiles, with exploding AI/ML usage 500 million business data users 64.2 zettabytes of data per year 1 billion workers assisted by AI/ML 80% of organizations store data in multi-hybrid Data in the Multi Cloud, Hybrid 46 billion connected devices New Users Machine Learning/AI New Data Types (mobile, social, IoT) Explosion in Data Volume
  • 4. 3 © Informatica. Proprietary and Confidential. Data Management Challenges Are Derailing AI & Analytics Initiatives Cost Overruns 75% of organizations using cloud data management will encounter budget overruns resulting in their questioning the value of using cloud services Resource Constraints 96% of IT and engineering decision-makers say no- code/low-code will be a priority because of the lack of software engineers Complexity 72% of organizations are still struggling to operationalize within their enterprise 96% 75% 72% Source: 1– Aptum cloud impact study | 2– Advanced Global Research, May 28, 2020 | 3- Venturebbeat.
  • 5. 4 © Informatica. Proprietary and Confidential. AI/ML Projects Rarely Make It into Production Only 1% of AI/ML projects are successful *Source: Databricks research 2018
  • 6. 5 © Informatica. Proprietary and Confidential. MLOps Streamlines the Development, Operationalization, and Execution of AI/ML Models MLOps covers all the key phases of AI/ML Prepare Data Build Model Deploy, Consume and Monitor Understanding the objectives and requirements of the project and preparing the data needed for the model. Build and assess various models based on a variety of different modeling techniques. Operationalize and monitor the models to deliver business value and performance.
  • 7. 6 © Informatica. Proprietary and Confidential. MLOps is a Team Sport Cross-functional collaboration is key Business Expert Data Scientist Data Engineer Data Steward Data Analyst Citizen Integrator
  • 8. 7 © Informatica. Proprietary and Confidential. One-click, serverless deployment of ANY AIML Model Only with Informatica, data scientists and ML engineers can operationalize AI/ML models @ scale with ModelServe • Simple, easy-to-use, wizard-driven approach for data scientists and ML engineers to deploy and operationalize any AI/ML models at scale • Provide flexibility for data scientists and ML engineers to build their AI/ML models in any framework and consume them in any application • Enable data scientists to accelerate AI/ML initiatives with high-quality, trusted, and governed data • Improve the productivity of data science teams by streamlining and automating the process of building, deploying, and monitoring machine learning models • Enhance model performance with timely delivery of trusted data using integrated DataOps
  • 9. 8 © Informatica. Proprietary and Confidential. Call to Action Sign up for Informatica ModelServe Public Preview Download the MLOps White Paper to Put AI Into Action
  • 11. William McKnight President, McKnight Consulting Group • Frequent keynote speaker and trainer internationally • Consulted to Pfizer, Scotiabank, Fidelity, TD Ameritrade, Teva Pharmaceuticals, Verizon, and many other Global 1000 companies • Hundreds of articles, blogs and white papers in publication • Focused on delivering business value and solving business problems utilizing proven, streamlined approaches to information management • Former Database Engineer, Fortune 50 Information Technology executive and Ernst&Young Entrepreneur of Year Finalist • Owner/consultant: Research, Data Strategy and Implementation consulting firm 2
  • 12. McKnight Consulting Group Offerings Strategy Training Strategy  Trusted Advisor  Action Plans  Roadmaps  Tool Selections  Program Management Training  Classes  Workshops Implementation  Data/Data Warehousing/Business Intelligence/Analytics  Big Data  Master Data Management  Governance/Quality Implementation 3
  • 13. McKnight Consulting Group Client Portfolio
  • 14. ML Uptake is Strong 5
  • 15. Use Cases for ML Flow optimization Modeling and analytics Predictive insights Threat and risk analysis Public Sector Traffic flow management Smart city planning Autonomous routing Situational Awareness Oil and Gas Pipeline modelling Drilling patterns and asset utilization Intelligent planning Safety assurance Manufacturing Supply chain optimization Production optimization Predictive maintenance Fault identification Retail Supply chain optimization Customer experience Segmentation analysis and forecasting Fraud and theft identification Healthcare Patient care pathway optimization Disease research and drug creation Early diagnosis of conditions Patient safety Technology Operational efficiency Log analysis Capacity planning Cybersecurity and zero-day detection 6
  • 16. Drivers to MLOps • Senior management does not always see ML as strategic, and it can be difficult to measure and manage the value of ML projects. • ML initiatives can work in isolation from each other, resulting in difficulties aligning workflows between ML and other teams. • To be effective, ML training requires large quantities of high-quality data, which creates significant overheads across data access, preparation, and ongoing management. • ML/data science work requires a large amount of trial and error, making it hard to plan the time required to complete a project. 7
  • 17. What is MLOps? • MLOps is a practice for collaboration between data science and operations to manage the production machine learning (ML) lifecycles. • As an amalgamation of “machine learning” and “operations,” MLOps applies DevOps principles to ML delivery, enabling the delivery of ML- based innovation at scale to result in: – Faster time to market of ML- based solutions – More rapid rate of experimentation, driving innovation – Assurance of quality, trustworthiness, and ethical AI 8
  • 18. From ML to MLOps • Many companies have built strong ML capabilities • Few businesses have been successful in putting the majority of their ML models into production, leaving a sizable amount of value untapped. • Machine learning operations, also known as MLOps, are a set of standards, tools, and frameworks that are used to scale ML to reach its full potential. • Three main objectives of MLOps, which concentrates on the entire life cycle of ML model design, implementation, testing, monitoring, and management, are as follows: – To create a highly repeatable procedure for the entire life cycle of a model, from feature exploration to model deployment in production. – Data scientists and analysts should be shielded from the complexity of the infrastructure so they can concentrate on their models and plans. – Develop MLOps so that it scales without a horde of engineers, along with the number of models and modeling complexity. 9
  • 19. MLOps Operations • For modern enterprises, use of ML goes to the heart of digital transformation, enabling organizations to harness the power of their data and deliver new and differentiated services to their customers. Achieving this goal is predicated on three pillars: • Development of such models requires an iterative approach so the domain can be better understood, and the models improved over time, as new learnings are achieved from data and inference. • Automated tools and repositories need to store and keep track of models, code, data lineage, and a target environment for deployment of ML-enabled applications at speed without undermining governance. • Developers and data scientists need to work collaboratively to ensure ML initiatives are aligned with broader software delivery and, more broadly still, IT-business alignment. 10
  • 20. Why not DevOps? • Connect data and services. DevOps success depends on how well platforms of data and existing/new services can be integrated, adapting to changing circumstances. • Automate deployment. Automation needs to be considered in the context of the above, to ensure constant, consistent delivery of business value. • Operate and orchestrate resources. A commoditized, flexible platform is table stakes: as platform efficiency increases, so does DevOps effectiveness. 11
  • 21. The goal is to assure the delivery of value to the business, its customers and other stakeholders. 12
  • 22. Terminology • Pipeline. Each development iteration of an ML-based application will follow a planned and automated series of steps. The pipeline itself can be put under configuration control, such that the steps can be repeated. • Datasets store/Datasets. MLOps relies on an easily accessible and scalable source of data, both during training and inference. While data may come from several places, it will be prepared, cleaned and accessed as a single resource. • Repository. A common, version-controlled storage resource (e.g. Git, Artifactory, Azure Artifacts) for data, model and configuration schemas, managing dependencies between models, libraries and other resources. • Registry. A logical picture of all elements required to support a given ML model, across its development and operational pipeline. 13
  • 23. Terminology • Workspace. Model and application developers conduct their activities within individual workspaces, accessible graphically or via code (e.g. written in Python), with access control over data sets, models and insights • Target. A deployment environment for ML models and code, packaged for example as containers/microservices that is often cloud- based, but can include on-premises and edge-based environments. • Experiment. Outputs of a given iteration or run need to be stored so they can be assessed, compared and monitored for audit purposes. • Model. Packaged output of an experiment which can be used to predict values or built on top of (via transfer learning). • Endpoint. Internet-capable computer hardware device on a TCP/IP network. 14
  • 26. Applying MLOps in Practice • Configure Target – Set up the compute targets on which models will be trained. • Prepare data – Set up how data is ingested, prepared and used • Train Model – Develop ML training scripts and submit them to the compute target • Containerize the Service – After a satisfactory run is found, register the persisted model in a model registry. • Validate Results – Application integration test of the service deployed on dev/test target. • Deploy Model – If the model is satisfactory, deploy it into the target environment • Monitor Model – Monitor the deployed model to evaluate its inferencing performance and accuracy 17
  • 27. For iterative pipelines to continue to deliver results, we need • Reproducibility – as with software configuration management and continuous integration, ML pipelines and steps, together with their data sources and models, libraries and SDKs, need to be stored and maintained such that they can be repeated exactly as previously. • Reusability– to fit with principles of continuous delivery, the pipeline needs to be able to package and deliver models and code into production, both to training and target environments. • Manageability – the ability to apply governance, linking changes to models and code to development activities (for example through sprints) and enabling managers to measure and oversee both progress and value delivery. • Automation – as with DevOps, continuous integration and delivery require automation to assure rapid and repeatable pipelines, particularly when these are augmented by governance and testing (which can otherwise create a bottleneck). 18
  • 28. MLOps scenario: Customer Churn • Prepare Environment: Create and configure data stores, in this case CRM data • Normalize, transform and otherwise prepare datasets for training and inference • Point algorithms and code to the data • Enforce transparency (e.g. through audit trails) to build confidence in results 19
  • 29. Create Pipelines for Training and Inference 20
  • 30. Monitor Results for Applicability and Effectiveness of Insights 21
  • 31. Azure Machine Learning (example) 22
  • 32. Azure Solution Architecture (example) • With security controls in place, a user can provision a workspace private link, customer managed keys, and role-based access control (RBAC) using AML python SDK, CLI, or UX. ARM templates can be used for automation. • Compute instance is used as a managed workstation by data scientists and is used to build models. IT Admin can create a compute instance behind a VNet if there are restrictions in place to not use a public IP. • Compute Cluster is used as a training compute to train ML models. IT Admin (not shown) can create a compute cluster behind a VNet or enable a private link if there are restrictions in place to not use a public IP. • Once a model is created it can be deployed on AKS cluster. A private AKS cluster with no public IP can be attached to the AML workspace and an internal load balancer can be used so that the deployed scoring endpoint is not visible outside of the virtual network. All the scoring requests to the deployed model are made over TLS/SSL. 23
  • 33. MLOps Features • Ease of Setup and Use – Create ML Managed Endpoints – Create Compute Resources – Manage Compute Resources • MLOps Workflow – Model Orchestration – Data Orchestration 24
  • 34. MLOps Features • Security – Network – User – Data • Governance – Monitoring – Control • Automation – Experiments – Workflow – Code and App Orchestration – Event-Driven 25
  • 35. MLOps Features • Experiment Management • Scheduling • Accuracy Management • Retraining 26
  • 36. MLOps Features • Model Explainability • A/B Model Testing • Granular Data Preparation 27
  • 37. Midsize Organization MLOps Costs Category Type Price Per Time Time Units Per Year Subtotal Units Amount ML1 Compute E8 v3 $0.504 8,760 $4,415 16 $70,641 Service included $0.000 8,760 $0 16 $0 ML2 Model Training Per node per hour $19.32 8,760 $203,092 0.2 $33,849 Batch prediction Per node per hour $1.160 8,760 $10,162 16 $162,586 ML3 Compute ml.r5.2xlarge $0.504 8,760 $4,415 16 $70,641 Service ml.r5.2xlarge $0.101 8,760 $885 16 $14,156 28
  • 38. Maturity Levels 29 1 Just gaining an understanding of using machine learning. No data scientists hired. Early data models built without much success. There is a belief that whatever DevOps processes are in place will handle ML. 2 The data architecture serves most data that would be necessary for ML. A cloud commitment and direction is present, providing scale for ML. A first data scientist is hired and prototyping is done. A full lifecycle ML is accomplished with manual processes. MLOps is still an afterthought. 3 This company is actively looking to deliver the benefits of ML across the company. There is recognition of ML at the executive level. However, early processes in use resemble DevOps and will not scale. Company begins forking their DevOps for ML. 4 There is company-wide embracement of ML. Benefits have been produced and realized. There are numerous and ample data scientists and the data architecture has matured so that more ML benefits can be realized. Although there still isn’t full consistency in processes, the company has embraced MLOps and is rapidly adapting it. 5 The business has fundamentally changed due to ML and it could not have done so without MLOps. ML is applied to initiatives wherever possible. MLOps is nurtured as much as ML and includes model sharing, reusability and reproducibility, model diagnostics and a strong path to production. Governance has become central to ML strategy, ensuring outcomes that are explainable and transparent. As featured in
  • 39. In Conclusion • ML Uptake is Strong • A MLOps workspace is a cloud-based development environment that enables you to collaboratively develop, test and deploy machine learning models • Develop iterative pipelines to continue to deliver result • Automation is a key differentiator in MLOps platforms • Embrace Transparency and Predictability 30
  • 40. MLOps: Applying DevOps to Competitive Advantage Presented by: William McKnight President, McKnight Consulting Group linkedin.com/in/wmcknight www.mcknightcg.com (214) 514-1444