Analisi dati per software anti frode. Roberto Marmo, Università di Pavia

Data Driven Innovation
Data Driven InnovationData Driven Innovation
Data Analysis and Anti-Fraud Software
Analisi dati per software anti frode
Roberto Marmo
Università di Pavia, Facoltà di Ingegneria
www.robertomarmo.net www.socialmediamining.it
info@robertomarmo.net
https://it.linkedin.com/in/robertomarmo
2
Association of Certified Fraud Examiners ACFE
ACFE Central Italy Chapter info@acfecentral.it www.acfecentral.it
• non-profit association that links professionals who are actively
involved in anti-fraud activities including preventing,
detecting, and investigating fraud http://www.acfe.com/
• ACFE Certified Fraud Examiner è una associazione senza
scopo di lucro che mette in contatto tutti i professionisti che si
occupano attivamente di frodi
3
Fraud / Frode
• a knowing misrepresentation of the truth or concealment of a
material fact to induce another to act to his or her detriment,
includes any intentional or deliberate act to deprive another of
the property or money by the guile, deception, or other unfair
means
• comportamento attivo od omissivo che causi un altrui errore e
che determini un indebito profitto e un danno, anche potenziale,
tende a sovrapporsi con il comportamento scorretto e sleale, la
mancata segnalazione da parte del soggetto agente di un
errore preesistente commesso dalla vittima è sufficiente per
qualificare un atto come fraudolento
• http://www.acfe.com/fraud-101.aspx
4
Fraud / Frode
• fraud detection: methodologies to detect and
prevent fraudulent activities / metodi per trovare
le frodi
• red flag: signal that something is out of the
ordinary and may need to be investigated
further / segnale che indica anomalia da
investigare
5
Fraud / Frode
• forensic fraud: when forensic examiner try to
reconstruct the fraud scenario / si cerca di
ricostruire lo scenario della frode
• fraud analytics: the process used to analyze
data that can identify anomalies, trends,
patterns / processo di analisi dei dati per
trovare anomalie, trend, configurazioni
• transactional data: can be used to
identify fraud in financial transactions / utili per
ricostruire le frodi nei pagamenti
6
Right fraud solution
Fraud detection tool must be able to / il sistema deve
sapere:
• information credibility by integrating disparate data
sources / integrare dati da diverse fonti
• detect fraud faster with real-time integration to IT
systems / trovare subito la frode
• reduce false positives by using all data/ riduzione dei
falsi positivi usando tutti i dati
• uncover hidden relationships, detect subtle patterns of
behavior, prioritize suspicious cases / trovare
relazioni nascoste, creare priorità
• fraud reporting / descrivere la frode trovata
7
Right fraud solution
Fraud detection tool must be able to / il sistema
deve saper fare:
• anti denial of service / protezione contro messa
fuori uso
• anti reverse engineering / protezione contro chi
vuole capire come funziona
• anti data manipulation / protezione contro
modifica dei dati inseriti
8
Methodology
1. team
2. fraud scenario / come avviene la frode
3. risk assessment / valutazione del rischio
4. data sampling / scelta dati rappresentativi
5. data manipulation / creazione di dati specifici
6. data analysis / analisi dati
7. results discussion / analisi dei risultati
9
1. team
• internal audit
• IT database specialist
• data analyst
• fraud specialist
• fraud auditor
• forensic accountant
• legal team
2. fraud scenario
• fraud scenario concealment is how the
fraudulent act is executed / contesto e modalità
con cui può avvenire la frode
• why does fraud occur / perché accade
• the person committing the fraud scenario /
persone coinvolte e caratteristiche
• how the scheme occurs, how the perpetrator of
the fraud obtains the financial benefit / come la
frode fornisce un vantaggio economico
• establish normal behaviors and abnormal
patterns / comportamenti corretti e scorretti
10
11
3. risk assessment
risk assessment and identify the potential targets
/ identificare gli obiettivi a rischio di subire frode:
• inherent vulnerabilities
• inventories
• cash
• reputation
• others Losses Matrix
12
4. data sampling
• statistical analysis technique used to select,
manipulate and analyze a representative subset
of data points / tecniche di analisi statistica
• time series analysis, series of data points in
time order / analisi della serie temporale
13
5. data manipulation
• synthetic data set, in case of no available data
on real fraud events / creazione dati con frodi
non realistiche
• pay attention / attenzione a interpretare risultati
• https://hal.archives-ouvertes.fr/hal-
00848343/document Synthetic logs generator
for fraud detection in mobile transfer services
• Synthetic Financial Datasets For Fraud
Detection https://www.kaggle.com/ntnu-
testimon/paysim1
14
6. data analysis
• statistical data analysis
– averages, quantiles, performance metrics,
probability distributions, and so on
– models and probability distributions
– time-series analysis
– clustering and classification to find patterns and
associations among groups of data
– anomaly, outlier detection
• artificial intelligence
– neural networks, Bayesian networks
– machine learning
– deep learning
15
6. data analysis
• social network analysis
– graph visualization
– social media mining
• information visualization
– visualizations that reveal useful patterns in the data
16
6. data analysis
• https://arxiv.org/ftp/arxiv/papers/1009/1009.611
9.pdf A Comprehensive Survey of Data Mining-
based Fraud Detection Research
• https://www.researchgate.net/publication/31061
0856_A_Survey_of_Credit_Card_Fraud_Detect
ion_Techniques_Data_and_Technique_Oriente
d_Perspective A Survey of Credit Card Fraud
Detection Techniques: Data and Technique
Oriented Perspective
17
6. data analysis - social network analysis
• knowledge discovery from
graph related to fraud
detection
• detection and investigation
of groups of collaborating
automobile insurance
fraudsters / trovare legami
tra le persone coinvolte in
un incidente automobilistico
18
6. data analysis - social network analysis
• Are fraudsters friends on
social media? / sono amici
online?
• Open Source INTelligence
• Social Media Mining
same emails
related to different
user accounts /
stessa email
relativi a diversi
account utente
19
6. data analysis – neural network
1.SOM Neural Network, visualization of the
multidimensional data reflecting the user
sequential activities
2.fraud detection on the basis of the threshold
type binary classification algorithm
clusters
of similar
users
profile
suspicio
us users
20
6. data analysis – deep learning
• Deep learning is a subset of AI and machine
learning that uses multi-layered artificial neural
networks
• https://github.com/aaxwaz/Fraud-detection-
using-deep-learning Credit Card Fraud
Detection using Restricted Boltzmann Machine
in TensorFlow and Python language
21
parallel coordinates, visualizing high-dimensional
geometry and analyzing multivariate data / grafico
con coordinate parallele per mostrare dati con
molte dimensioni
6. data analysis information visualization
22
Sankey diagrams, the width of the arrows is
shown proportionally to the cash flow quantity /
mostra il flusso pagamenti per trovare le perdite
6. data analysis information visualization
23
• digital forensics aims to detect the alterations
done in the images / alterazione di immagini per
falsificare le informazioni contenute
• example: human face on identity card,
document check stamp fraud detection
• approaches:
– image search of human face on Google
– set of image forensic techniques
– GIMP cross-platform image editor available
– http://fotoautentica.wordpress.com/tag/scoprire-un-
fotomontaggio/
6. data analysis image forgery detection
24
6. data analysis programming languages
• Python
– https://github.com/cloudacademy/fraud-detection Credit card
transactions fraud detection model
– https://github.com/yazanobeidi/fraud-detection Credit
Card Fraud Detection using Machine Learning
• R
– https://github.com/z-o-e/sales-fraud-detection Sales fraud
detection
– https://github.com/Davidovich4/fraud-detection Credit card
fraud dataset
• MatLab
https://www.mathworks.com/company/newsletters/arti
cles/systematic-fraud-detection-through-automated-
data-analytics-in-matlab.html
• Java, C, ecc.
6. results discussion
• reporting and monitoring dashboard: % score,
details on insights / schermata di riepilogo con
punteggio e spiegazione
25
26
6. results discussion
• confusion matrix, visualization performance of
fraud detection / mostra la precisione di risultati
• a+d=good b+c=bad prediction
• Key Fraud Indicators (KFI) related to financial
indicators and fraud amount
The end!
Thank you!
email info@robertomarmo.net
https://it.linkedin.com/in/robertomarmo
27
1 of 27

Recommended

Anti-Money Laundering Solution by
Anti-Money Laundering SolutionAnti-Money Laundering Solution
Anti-Money Laundering SolutionSri Ambati
1.5K views17 slides
A Survey of Online Credit Card Fraud Detection using Data Mining Techniques by
A Survey of Online Credit Card Fraud Detection using Data Mining TechniquesA Survey of Online Credit Card Fraud Detection using Data Mining Techniques
A Survey of Online Credit Card Fraud Detection using Data Mining TechniquesIJSRD
831 views3 slides
Credit Card Fraud Detection by
Credit Card Fraud DetectionCredit Card Fraud Detection
Credit Card Fraud Detectionijtsrd
197 views4 slides
Neo4j graphs in government by
Neo4j graphs in governmentNeo4j graphs in government
Neo4j graphs in governmentNeo4j
436 views49 slides
AML Knowledge Graph by
AML Knowledge GraphAML Knowledge Graph
AML Knowledge GraphVera Ekimenko
122 views11 slides
Analysis of-credit-card-fault-detection by
Analysis of-credit-card-fault-detectionAnalysis of-credit-card-fault-detection
Analysis of-credit-card-fault-detectionJustluk Luk
7.4K views15 slides

More Related Content

What's hot

Online Payment Fraud Detection with Azure Machine Learning by
Online Payment Fraud Detection with Azure Machine LearningOnline Payment Fraud Detection with Azure Machine Learning
Online Payment Fraud Detection with Azure Machine LearningStefano Tempesta
935 views12 slides
Application of Machine Learning in Cybersecurity by
Application of Machine Learning in CybersecurityApplication of Machine Learning in Cybersecurity
Application of Machine Learning in CybersecurityPratap Dangeti
523 views19 slides
Fraud analytics by
Fraud analyticsFraud analytics
Fraud analyticsSimran Mondal
503 views13 slides
GraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraud by
GraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraudGraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraud
GraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraudNeo4j
169 views35 slides
Operationalize deep learning models for fraud detection with Azure Machine Le... by
Operationalize deep learning models for fraud detection with Azure Machine Le...Operationalize deep learning models for fraud detection with Azure Machine Le...
Operationalize deep learning models for fraud detection with Azure Machine Le...Francesca Lazzeri, PhD
652 views21 slides
GraphTalks Italy - Using graphs to fight financial fraud by
GraphTalks Italy - Using graphs to fight financial fraudGraphTalks Italy - Using graphs to fight financial fraud
GraphTalks Italy - Using graphs to fight financial fraudNeo4j
381 views35 slides

What's hot(20)

Online Payment Fraud Detection with Azure Machine Learning by Stefano Tempesta
Online Payment Fraud Detection with Azure Machine LearningOnline Payment Fraud Detection with Azure Machine Learning
Online Payment Fraud Detection with Azure Machine Learning
Stefano Tempesta935 views
Application of Machine Learning in Cybersecurity by Pratap Dangeti
Application of Machine Learning in CybersecurityApplication of Machine Learning in Cybersecurity
Application of Machine Learning in Cybersecurity
Pratap Dangeti523 views
GraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraud by Neo4j
GraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraudGraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraud
GraphTalks Frankfurt - Leveraging Graph-Technology to fight financial fraud
Neo4j169 views
Operationalize deep learning models for fraud detection with Azure Machine Le... by Francesca Lazzeri, PhD
Operationalize deep learning models for fraud detection with Azure Machine Le...Operationalize deep learning models for fraud detection with Azure Machine Le...
Operationalize deep learning models for fraud detection with Azure Machine Le...
GraphTalks Italy - Using graphs to fight financial fraud by Neo4j
GraphTalks Italy - Using graphs to fight financial fraudGraphTalks Italy - Using graphs to fight financial fraud
GraphTalks Italy - Using graphs to fight financial fraud
Neo4j381 views
Phishing Detection using Machine Learning by Arjun BM
Phishing Detection using Machine LearningPhishing Detection using Machine Learning
Phishing Detection using Machine Learning
Arjun BM6.2K views
Brighterion bai july 2016 fraud white paper by Andrew Morrison
Brighterion bai july 2016 fraud white paperBrighterion bai july 2016 fraud white paper
Brighterion bai july 2016 fraud white paper
Andrew Morrison261 views
Credit Card Fraud Detection System: A Survey by IJMER
Credit Card Fraud Detection System: A SurveyCredit Card Fraud Detection System: A Survey
Credit Card Fraud Detection System: A Survey
IJMER5K views
Credit Card Fraud Detection Client Presentation by Ayapparaj SKS
Credit Card Fraud Detection Client PresentationCredit Card Fraud Detection Client Presentation
Credit Card Fraud Detection Client Presentation
Ayapparaj SKS3K views
Credit Card Fraud Detection Using Unsupervised Machine Learning Algorithms by Hariteja Bodepudi
Credit Card Fraud Detection Using Unsupervised Machine Learning AlgorithmsCredit Card Fraud Detection Using Unsupervised Machine Learning Algorithms
Credit Card Fraud Detection Using Unsupervised Machine Learning Algorithms
Hariteja Bodepudi359 views
Detecting Phishing using Machine Learning by ijtsrd
Detecting Phishing using Machine LearningDetecting Phishing using Machine Learning
Detecting Phishing using Machine Learning
ijtsrd1.4K views
Credit card fraud detection pptx (1) (1) by ajmal anbu
Credit card fraud detection pptx (1) (1)Credit card fraud detection pptx (1) (1)
Credit card fraud detection pptx (1) (1)
ajmal anbu944 views
A survey on detection of website phishing using mcac technique by bhas_ani
A survey on detection of website phishing using mcac techniqueA survey on detection of website phishing using mcac technique
A survey on detection of website phishing using mcac technique
bhas_ani353 views
Machine Learning & Cyber Security: Detecting Malicious URLs in the Haystack by Alistair Gillespie
Machine Learning & Cyber Security: Detecting Malicious URLs in the HaystackMachine Learning & Cyber Security: Detecting Malicious URLs in the Haystack
Machine Learning & Cyber Security: Detecting Malicious URLs in the Haystack
Alistair Gillespie255 views
Root conf digitalskimming-v4_arjunbm by Arjun BM
Root conf digitalskimming-v4_arjunbmRoot conf digitalskimming-v4_arjunbm
Root conf digitalskimming-v4_arjunbm
Arjun BM525 views
PHISHING DETECTION by umme ayesha
PHISHING DETECTIONPHISHING DETECTION
PHISHING DETECTION
umme ayesha10.4K views

Similar to Analisi dati per software anti frode. Roberto Marmo, Università di Pavia

RSB72-PPT.pptx by
RSB72-PPT.pptxRSB72-PPT.pptx
RSB72-PPT.pptxAryanGour1
13 views21 slides
IRJET - Online Credit Card Fraud Detection and Prevention System by
IRJET - Online Credit Card Fraud Detection and Prevention SystemIRJET - Online Credit Card Fraud Detection and Prevention System
IRJET - Online Credit Card Fraud Detection and Prevention SystemIRJET Journal
24 views3 slides
Cyber fraud in banks by
Cyber fraud in banksCyber fraud in banks
Cyber fraud in banksNetwork Intelligence India
6.4K views35 slides
Fraud management by
Fraud managementFraud management
Fraud managementKasun Lakmal Jayasinghe
48 views16 slides
Emerging technologies enabling in fraud detection by
Emerging technologies enabling in fraud detectionEmerging technologies enabling in fraud detection
Emerging technologies enabling in fraud detectionUmasree Raghunath
41 views20 slides
SplunkLive! Splunk for Insider Threats and Fraud Detection by
SplunkLive! Splunk for Insider Threats and Fraud DetectionSplunkLive! Splunk for Insider Threats and Fraud Detection
SplunkLive! Splunk for Insider Threats and Fraud DetectionSplunk
6.2K views27 slides

Similar to Analisi dati per software anti frode. Roberto Marmo, Università di Pavia(20)

IRJET - Online Credit Card Fraud Detection and Prevention System by IRJET Journal
IRJET - Online Credit Card Fraud Detection and Prevention SystemIRJET - Online Credit Card Fraud Detection and Prevention System
IRJET - Online Credit Card Fraud Detection and Prevention System
IRJET Journal24 views
Emerging technologies enabling in fraud detection by Umasree Raghunath
Emerging technologies enabling in fraud detectionEmerging technologies enabling in fraud detection
Emerging technologies enabling in fraud detection
SplunkLive! Splunk for Insider Threats and Fraud Detection by Splunk
SplunkLive! Splunk for Insider Threats and Fraud DetectionSplunkLive! Splunk for Insider Threats and Fraud Detection
SplunkLive! Splunk for Insider Threats and Fraud Detection
Splunk6.2K views
Utilizing Machine Learning In Banking To Prevent Fraud.pdf by Mindfire LLC
Utilizing Machine Learning In Banking To Prevent Fraud.pdfUtilizing Machine Learning In Banking To Prevent Fraud.pdf
Utilizing Machine Learning In Banking To Prevent Fraud.pdf
Mindfire LLC15 views
Vol 17 No 2 - July-December 2017 by ijcsbi
Vol 17 No 2 - July-December 2017Vol 17 No 2 - July-December 2017
Vol 17 No 2 - July-December 2017
ijcsbi86 views
A visual approach to fraud detection and investigation - Giuseppe Francavilla by Data Driven Innovation
A visual approach to fraud detection and investigation - Giuseppe FrancavillaA visual approach to fraud detection and investigation - Giuseppe Francavilla
A visual approach to fraud detection and investigation - Giuseppe Francavilla
Nasscom how can you identify fraud in fintech lending using deep learning by Ratnakar Pandey
Nasscom how can you identify fraud in fintech lending using deep learningNasscom how can you identify fraud in fintech lending using deep learning
Nasscom how can you identify fraud in fintech lending using deep learning
Ratnakar Pandey304 views
Unsupervised Learning for Credit Card Fraud Detection by IRJET Journal
Unsupervised Learning for Credit Card Fraud DetectionUnsupervised Learning for Credit Card Fraud Detection
Unsupervised Learning for Credit Card Fraud Detection
IRJET Journal42 views
White paper Real Time Transaction Analysis and fraudulent transaction detecti... by Ajay Alex
White paper Real Time Transaction Analysis and fraudulent transaction detecti...White paper Real Time Transaction Analysis and fraudulent transaction detecti...
White paper Real Time Transaction Analysis and fraudulent transaction detecti...
Ajay Alex1K views
DLD_SYNOPSIS by Nisha Jain
DLD_SYNOPSISDLD_SYNOPSIS
DLD_SYNOPSIS
Nisha Jain806 views
Building Intelligent Data Products (Applied AI) by Stephen Whitworth
Building Intelligent Data Products (Applied AI)Building Intelligent Data Products (Applied AI)
Building Intelligent Data Products (Applied AI)
Stephen Whitworth1.3K views
Claims Fraud Network Analysis by Cogitate.us
Claims Fraud Network AnalysisClaims Fraud Network Analysis
Claims Fraud Network Analysis
Cogitate.us65 views
Experiment by jbashask
ExperimentExperiment
Experiment
jbashask294 views

More from Data Driven Innovation

Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un... by
Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un...Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un...
Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un...Data Driven Innovation
1.4K views23 slides
La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen... by
La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen...La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen...
La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen...Data Driven Innovation
280 views27 slides
How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S... by
How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S...How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S...
How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S...Data Driven Innovation
270 views20 slides
Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To... by
Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To...Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To...
Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To...Data Driven Innovation
347 views23 slides
CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF... by
CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF...CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF...
CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF...Data Driven Innovation
187 views13 slides
Progetto EOSC-Pillar (Fulvio Galeazzi, GARR) by
Progetto EOSC-Pillar (Fulvio Galeazzi, GARR)Progetto EOSC-Pillar (Fulvio Galeazzi, GARR)
Progetto EOSC-Pillar (Fulvio Galeazzi, GARR)Data Driven Innovation
282 views21 slides

More from Data Driven Innovation(20)

Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un... by Data Driven Innovation
Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un...Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un...
Integrazione della mobilità elettrica nei sistemi urbani (Stefano Carrese, Un...
La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen... by Data Driven Innovation
La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen...La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen...
La statistica ufficiale e i trasporti marittimi nell'era dei big data (Vincen...
How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S... by Data Driven Innovation
How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S...How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S...
How can we realize the Mobility as a Service (Maas) (Andrea Paletti, London S...
Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To... by Data Driven Innovation
Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To...Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To...
Il DTC-Lazio e i dati del patrimonio culturale (Maria Prezioso, Università To...
CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF... by Data Driven Innovation
CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF...CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF...
CHNet-DHLab: Servizi Cloud a supporto dei beni culturali (Fabio Proietti, INF...
Una infrastruttura per l’accesso al patrimonio culturale: il Progetto del Por... by Data Driven Innovation
Una infrastruttura per l’accesso al patrimonio culturale: il Progetto del Por...Una infrastruttura per l’accesso al patrimonio culturale: il Progetto del Por...
Una infrastruttura per l’accesso al patrimonio culturale: il Progetto del Por...
Utilizzo dei Big data per l’analisi dei flussi veicolari e della mobilità (Ma... by Data Driven Innovation
Utilizzo dei Big data per l’analisi dei flussi veicolari e della mobilità (Ma...Utilizzo dei Big data per l’analisi dei flussi veicolari e della mobilità (Ma...
Utilizzo dei Big data per l’analisi dei flussi veicolari e della mobilità (Ma...
I dati personali nell'analisi comportamentale della mobilità di dipendenti e ... by Data Driven Innovation
I dati personali nell'analisi comportamentale della mobilità di dipendenti e ...I dati personali nell'analisi comportamentale della mobilità di dipendenti e ...
I dati personali nell'analisi comportamentale della mobilità di dipendenti e ...
Estrarre valore dai dati: tecnologie per ottimizzare la mobilità del futuro (... by Data Driven Innovation
Estrarre valore dai dati: tecnologie per ottimizzare la mobilità del futuro (...Estrarre valore dai dati: tecnologie per ottimizzare la mobilità del futuro (...
Estrarre valore dai dati: tecnologie per ottimizzare la mobilità del futuro (...
Le piattaforme dati per la mobilità nelle città italiane (Marco Mena, EY) by Data Driven Innovation
Le piattaforme dati per la mobilità nelle città italiane (Marco Mena, EY)Le piattaforme dati per la mobilità nelle città italiane (Marco Mena, EY)
Le piattaforme dati per la mobilità nelle città italiane (Marco Mena, EY)
WiseTown, un ecosistema di applicazioni e strumenti per migliorare la qualità... by Data Driven Innovation
WiseTown, un ecosistema di applicazioni e strumenti per migliorare la qualità...WiseTown, un ecosistema di applicazioni e strumenti per migliorare la qualità...
WiseTown, un ecosistema di applicazioni e strumenti per migliorare la qualità...
CityOpenSource as a civic tech tool (Ilaria Vitellio, CityOpenSource) by Data Driven Innovation
CityOpenSource as a civic tech tool (Ilaria Vitellio, CityOpenSource)CityOpenSource as a civic tech tool (Ilaria Vitellio, CityOpenSource)
CityOpenSource as a civic tech tool (Ilaria Vitellio, CityOpenSource)
Big Data Confederation: toward the local urban data market place (Renzo Taffa... by Data Driven Innovation
Big Data Confederation: toward the local urban data market place (Renzo Taffa...Big Data Confederation: toward the local urban data market place (Renzo Taffa...
Big Data Confederation: toward the local urban data market place (Renzo Taffa...
Making citizens the eyes of policy makers: a sweet spot for hybrid AI? (Danie... by Data Driven Innovation
Making citizens the eyes of policy makers: a sweet spot for hybrid AI? (Danie...Making citizens the eyes of policy makers: a sweet spot for hybrid AI? (Danie...
Making citizens the eyes of policy makers: a sweet spot for hybrid AI? (Danie...
Dall'Agenda Digitale alla Smart City: il percorso di Roma Capitale verso il D... by Data Driven Innovation
Dall'Agenda Digitale alla Smart City: il percorso di Roma Capitale verso il D...Dall'Agenda Digitale alla Smart City: il percorso di Roma Capitale verso il D...
Dall'Agenda Digitale alla Smart City: il percorso di Roma Capitale verso il D...
Reusing open data: how to make a difference (Vittorio Scarano, Università di ... by Data Driven Innovation
Reusing open data: how to make a difference (Vittorio Scarano, Università di ...Reusing open data: how to make a difference (Vittorio Scarano, Università di ...
Reusing open data: how to make a difference (Vittorio Scarano, Università di ...
Gestire i beni culturali con i big data (Sandro Stancampiano, Istat) by Data Driven Innovation
Gestire i beni culturali con i big data (Sandro Stancampiano, Istat)Gestire i beni culturali con i big data (Sandro Stancampiano, Istat)
Gestire i beni culturali con i big data (Sandro Stancampiano, Istat)
Data Governance: cos’è e perché è importante? (Elena Arista, Erwin) by Data Driven Innovation
Data Governance: cos’è e perché è importante? (Elena Arista, Erwin)Data Governance: cos’è e perché è importante? (Elena Arista, Erwin)
Data Governance: cos’è e perché è importante? (Elena Arista, Erwin)
Data driven economy: bastano i dati per avviare una start up? (Gabriele Anton... by Data Driven Innovation
Data driven economy: bastano i dati per avviare una start up? (Gabriele Anton...Data driven economy: bastano i dati per avviare una start up? (Gabriele Anton...
Data driven economy: bastano i dati per avviare una start up? (Gabriele Anton...

Recently uploaded

Short Story Assignment by Kelly Nguyen by
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyenkellynguyen01
19 views17 slides
Cross-network in Google Analytics 4.pdf by
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdfGA4 Tutorials
6 views7 slides
Survey on Factuality in LLM's.pptx by
Survey on Factuality in LLM's.pptxSurvey on Factuality in LLM's.pptx
Survey on Factuality in LLM's.pptxNeethaSherra1
6 views9 slides
MOSORE_BRESCIA by
MOSORE_BRESCIAMOSORE_BRESCIA
MOSORE_BRESCIAFederico Karagulian
5 views8 slides
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... by
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...DataScienceConferenc1
5 views18 slides
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... by
[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...DataScienceConferenc1
5 views36 slides

Recently uploaded(20)

Short Story Assignment by Kelly Nguyen by kellynguyen01
Short Story Assignment by Kelly NguyenShort Story Assignment by Kelly Nguyen
Short Story Assignment by Kelly Nguyen
kellynguyen0119 views
Cross-network in Google Analytics 4.pdf by GA4 Tutorials
Cross-network in Google Analytics 4.pdfCross-network in Google Analytics 4.pdf
Cross-network in Google Analytics 4.pdf
GA4 Tutorials6 views
Survey on Factuality in LLM's.pptx by NeethaSherra1
Survey on Factuality in LLM's.pptxSurvey on Factuality in LLM's.pptx
Survey on Factuality in LLM's.pptx
NeethaSherra16 views
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... by DataScienceConferenc1
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... by DataScienceConferenc1
[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...
CRIJ4385_Death Penalty_F23.pptx by yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1006 views
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation by DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
UNEP FI CRS Climate Risk Results.pptx by pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 views
SUPER STORE SQL PROJECT.pptx by khan888620
SUPER STORE SQL PROJECT.pptxSUPER STORE SQL PROJECT.pptx
SUPER STORE SQL PROJECT.pptx
khan88862012 views
CRM stick or twist.pptx by info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info82821710 views
CRM stick or twist workshop by info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info8282179 views
Data about the sector workshop by info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821712 views
Advanced_Recommendation_Systems_Presentation.pptx by neeharikasingh29
Advanced_Recommendation_Systems_Presentation.pptxAdvanced_Recommendation_Systems_Presentation.pptx
Advanced_Recommendation_Systems_Presentation.pptx
3196 The Case of The East River by ErickANDRADE90
3196 The Case of The East River3196 The Case of The East River
3196 The Case of The East River
ErickANDRADE9016 views

Analisi dati per software anti frode. Roberto Marmo, Università di Pavia

  • 1. Data Analysis and Anti-Fraud Software Analisi dati per software anti frode Roberto Marmo Università di Pavia, Facoltà di Ingegneria www.robertomarmo.net www.socialmediamining.it info@robertomarmo.net https://it.linkedin.com/in/robertomarmo
  • 2. 2 Association of Certified Fraud Examiners ACFE ACFE Central Italy Chapter info@acfecentral.it www.acfecentral.it • non-profit association that links professionals who are actively involved in anti-fraud activities including preventing, detecting, and investigating fraud http://www.acfe.com/ • ACFE Certified Fraud Examiner è una associazione senza scopo di lucro che mette in contatto tutti i professionisti che si occupano attivamente di frodi
  • 3. 3 Fraud / Frode • a knowing misrepresentation of the truth or concealment of a material fact to induce another to act to his or her detriment, includes any intentional or deliberate act to deprive another of the property or money by the guile, deception, or other unfair means • comportamento attivo od omissivo che causi un altrui errore e che determini un indebito profitto e un danno, anche potenziale, tende a sovrapporsi con il comportamento scorretto e sleale, la mancata segnalazione da parte del soggetto agente di un errore preesistente commesso dalla vittima è sufficiente per qualificare un atto come fraudolento • http://www.acfe.com/fraud-101.aspx
  • 4. 4 Fraud / Frode • fraud detection: methodologies to detect and prevent fraudulent activities / metodi per trovare le frodi • red flag: signal that something is out of the ordinary and may need to be investigated further / segnale che indica anomalia da investigare
  • 5. 5 Fraud / Frode • forensic fraud: when forensic examiner try to reconstruct the fraud scenario / si cerca di ricostruire lo scenario della frode • fraud analytics: the process used to analyze data that can identify anomalies, trends, patterns / processo di analisi dei dati per trovare anomalie, trend, configurazioni • transactional data: can be used to identify fraud in financial transactions / utili per ricostruire le frodi nei pagamenti
  • 6. 6 Right fraud solution Fraud detection tool must be able to / il sistema deve sapere: • information credibility by integrating disparate data sources / integrare dati da diverse fonti • detect fraud faster with real-time integration to IT systems / trovare subito la frode • reduce false positives by using all data/ riduzione dei falsi positivi usando tutti i dati • uncover hidden relationships, detect subtle patterns of behavior, prioritize suspicious cases / trovare relazioni nascoste, creare priorità • fraud reporting / descrivere la frode trovata
  • 7. 7 Right fraud solution Fraud detection tool must be able to / il sistema deve saper fare: • anti denial of service / protezione contro messa fuori uso • anti reverse engineering / protezione contro chi vuole capire come funziona • anti data manipulation / protezione contro modifica dei dati inseriti
  • 8. 8 Methodology 1. team 2. fraud scenario / come avviene la frode 3. risk assessment / valutazione del rischio 4. data sampling / scelta dati rappresentativi 5. data manipulation / creazione di dati specifici 6. data analysis / analisi dati 7. results discussion / analisi dei risultati
  • 9. 9 1. team • internal audit • IT database specialist • data analyst • fraud specialist • fraud auditor • forensic accountant • legal team
  • 10. 2. fraud scenario • fraud scenario concealment is how the fraudulent act is executed / contesto e modalità con cui può avvenire la frode • why does fraud occur / perché accade • the person committing the fraud scenario / persone coinvolte e caratteristiche • how the scheme occurs, how the perpetrator of the fraud obtains the financial benefit / come la frode fornisce un vantaggio economico • establish normal behaviors and abnormal patterns / comportamenti corretti e scorretti 10
  • 11. 11 3. risk assessment risk assessment and identify the potential targets / identificare gli obiettivi a rischio di subire frode: • inherent vulnerabilities • inventories • cash • reputation • others Losses Matrix
  • 12. 12 4. data sampling • statistical analysis technique used to select, manipulate and analyze a representative subset of data points / tecniche di analisi statistica • time series analysis, series of data points in time order / analisi della serie temporale
  • 13. 13 5. data manipulation • synthetic data set, in case of no available data on real fraud events / creazione dati con frodi non realistiche • pay attention / attenzione a interpretare risultati • https://hal.archives-ouvertes.fr/hal- 00848343/document Synthetic logs generator for fraud detection in mobile transfer services • Synthetic Financial Datasets For Fraud Detection https://www.kaggle.com/ntnu- testimon/paysim1
  • 14. 14 6. data analysis • statistical data analysis – averages, quantiles, performance metrics, probability distributions, and so on – models and probability distributions – time-series analysis – clustering and classification to find patterns and associations among groups of data – anomaly, outlier detection • artificial intelligence – neural networks, Bayesian networks – machine learning – deep learning
  • 15. 15 6. data analysis • social network analysis – graph visualization – social media mining • information visualization – visualizations that reveal useful patterns in the data
  • 16. 16 6. data analysis • https://arxiv.org/ftp/arxiv/papers/1009/1009.611 9.pdf A Comprehensive Survey of Data Mining- based Fraud Detection Research • https://www.researchgate.net/publication/31061 0856_A_Survey_of_Credit_Card_Fraud_Detect ion_Techniques_Data_and_Technique_Oriente d_Perspective A Survey of Credit Card Fraud Detection Techniques: Data and Technique Oriented Perspective
  • 17. 17 6. data analysis - social network analysis • knowledge discovery from graph related to fraud detection • detection and investigation of groups of collaborating automobile insurance fraudsters / trovare legami tra le persone coinvolte in un incidente automobilistico
  • 18. 18 6. data analysis - social network analysis • Are fraudsters friends on social media? / sono amici online? • Open Source INTelligence • Social Media Mining same emails related to different user accounts / stessa email relativi a diversi account utente
  • 19. 19 6. data analysis – neural network 1.SOM Neural Network, visualization of the multidimensional data reflecting the user sequential activities 2.fraud detection on the basis of the threshold type binary classification algorithm clusters of similar users profile suspicio us users
  • 20. 20 6. data analysis – deep learning • Deep learning is a subset of AI and machine learning that uses multi-layered artificial neural networks • https://github.com/aaxwaz/Fraud-detection- using-deep-learning Credit Card Fraud Detection using Restricted Boltzmann Machine in TensorFlow and Python language
  • 21. 21 parallel coordinates, visualizing high-dimensional geometry and analyzing multivariate data / grafico con coordinate parallele per mostrare dati con molte dimensioni 6. data analysis information visualization
  • 22. 22 Sankey diagrams, the width of the arrows is shown proportionally to the cash flow quantity / mostra il flusso pagamenti per trovare le perdite 6. data analysis information visualization
  • 23. 23 • digital forensics aims to detect the alterations done in the images / alterazione di immagini per falsificare le informazioni contenute • example: human face on identity card, document check stamp fraud detection • approaches: – image search of human face on Google – set of image forensic techniques – GIMP cross-platform image editor available – http://fotoautentica.wordpress.com/tag/scoprire-un- fotomontaggio/ 6. data analysis image forgery detection
  • 24. 24 6. data analysis programming languages • Python – https://github.com/cloudacademy/fraud-detection Credit card transactions fraud detection model – https://github.com/yazanobeidi/fraud-detection Credit Card Fraud Detection using Machine Learning • R – https://github.com/z-o-e/sales-fraud-detection Sales fraud detection – https://github.com/Davidovich4/fraud-detection Credit card fraud dataset • MatLab https://www.mathworks.com/company/newsletters/arti cles/systematic-fraud-detection-through-automated- data-analytics-in-matlab.html • Java, C, ecc.
  • 25. 6. results discussion • reporting and monitoring dashboard: % score, details on insights / schermata di riepilogo con punteggio e spiegazione 25
  • 26. 26 6. results discussion • confusion matrix, visualization performance of fraud detection / mostra la precisione di risultati • a+d=good b+c=bad prediction • Key Fraud Indicators (KFI) related to financial indicators and fraud amount
  • 27. The end! Thank you! email info@robertomarmo.net https://it.linkedin.com/in/robertomarmo 27