Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Post cardiac arrest syndrome

11,397 views

Published on

Published in: Health & Medicine
  • Doctor's 2-Minute Ritual For Shocking Daily Belly Fat Loss! Watch This Video ♣♣♣ https://tinyurl.com/bkfitness4u
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • OUtstanding presentation, Dr. de Guzman. Thank you for posting this.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Post cardiac arrest syndrome

  1. 1. POST-CARDIAC ARREST SYNDROME<br />Darla Kay A. de Guzman, M.D.<br />Fellow-in-Training<br />Pediatric Critical Care Center<br />
  2. 2. INTRODUCTION<br />
  3. 3. OBJECTIVES<br />To define and describe post-cardiac arrest syndrome among cardiac arrest survivors<br />2. To impart knowledge regarding the pathophysiology, treatment and prognosis of patients who regain spontaneous circulation after cardiac arrest<br />3. To provide basic guideline for optimization of post-cardiac arrest care.<br />
  4. 4. GENERAL DATA<br />C. J.<br />7 yr old , female<br />From Project 7, Q.C.<br />Admitted last March 18, 2009<br />
  5. 5. Chief Complaint<br /> difficulty of breathing<br />
  6. 6. INTERVAL HISTORY<br />Patient is a diagnosed case of bronchial asthma since 4 years old<br />On Salbutamol nebulization PRN basis<br />Usual triggers : URTI, climate changes, dust<br />Last attack was January 2009<br />
  7. 7. HISTORY OF PRESENT ILLNESS<br />2 days PTA- cough, colds, no fever<br /> given Ambroxol. No consult done<br /> 1 day PTA- symptoms persisted<br />difficulty of breathing <br /> Salbutamol nebulization (total of 9 doses)<br /> DOA - DOB persisted<br /> consult at St. Agnes Hosp <br /> 2 doses of Salbutamol + Ipratropium Br nebulization<br /> Advised admission , opted THOC.<br /> PCMC<br />
  8. 8. FAMILY HISTORY<br />30<br />30<br /> Construction worker<br /> Housewife<br />(+) asthma<br />(+) asthma<br />3/12<br />
  9. 9. BIRTH AND MATERNAL HISTORY<br />Born to a 23 y/o primigravid, NABD, RPNCU <br /> c/o LHC, (+)MVS, Feso4<br />No illnesses during pregnancy<br />No exposure to teratogen, viral exanthem <br /> nor radiation<br />Del FT via NSD at EAMC, BW- 2.7kg, good cry and activity at birth<br />No fetomaternal complications noted<br />Discharged after 1 day <br />
  10. 10. NUTRITIONAL HISTORY<br />Breastfed x few weeks of life<br />Shifted to MF (Alacta – alactamil-<br /> alactagen)<br />Complementary feeding: started at <br /> 3-4 mos old<br />
  11. 11. IMMUNIZATION HISTORY<br />BCG<br />DPT/OPV x 3 doses with booster<br />Hepa B x 3 doses<br />Hib x 1<br />Measles<br />
  12. 12. GROWTH AND DEVELOPMENT<br />At par with age<br />Grade 2 average student at San Antonio Elementary School<br />
  13. 13. PAST MEDICAL HISTORY<br />No history of previous hospitalization<br />No known food or drug allergy<br />
  14. 14. PHYSICAL EXAMINATION<br /><ul><li>Awake, irritable, in respiratory distress</li></ul>CR- 130/min RR- 68/min T- 36.7 <br /><ul><li>SKIN: warm, no rashes
  15. 15. HEENT: pink palpebral conjunctiva, white sclera, </li></ul> (-)alar flaring<br /><ul><li>NECK: supple, (-) CLAD
  16. 16. CHEST/ LUNGS: symmetrical chest expansion, (+)subcostal, intercostal retractions, tight air entry
  17. 17. HEART: adynamicprecordium, tachycardic, regular rhythm, no murmur</li></li></ul><li>PHYSICAL EXAMINATION<br />ABDOMEN: Flat, normoactive bowel sounds, soft, no organomegally<br />EXTREMITIES: poor distal pulses, <br /> cyanotic nailbeds<br /> CRT 2-3 secs <br />
  18. 18. SEQUENCE OF Events...<br /> RESPIRATORY FAILURE <br /> HYPOXEMIA<br /> HYPERCARBIA & ACIDOSIS<br /> HYPOTENSION<br /> PEA<br />ASYSTOLE<br />irritable<br />tachycardia<br />tachypnea<br />subcostal, intercostal retractions, tight air entry<br />cyanotic nailbeds<br />poor distal pulses<br />
  19. 19. Cause of Cardiac Arrest: VF or Asphyxia? <br />Asphyxia- most common cause <br /> in children: 80-90%<br />VF- 5-15% of children<br />R.W.Hickey,M.D., M.J.Painter M.D., Brain Injury from Cardiac Arrest in Children; Neurol Clin 24 (2006) 147-158<br />
  20. 20. Adult and Pediatric Differences...<br />Adults: Common <br /> Causes<br /><ul><li>cardiac diseases
  21. 21. non-cardiac </li></ul> diseases<br />Pediatrics: Common Causes<br /><ul><li>respiratory disorders (eg, airway obstruction, smoke inhalation, drowning, infection, sudden infant death syndrome).
  22. 22. trauma
  23. 23. poisoning
  24. 24. cardiac diseases </li></li></ul><li>Etiology of out-of-hospital cardiac arrest in children<br />Cause of arrest n (%) Survival to hosp d/c<br />Sudden infant death syndrome 136 (23) 0<br />Trauma 118 (20) 5<br />Respiratory 96 (16) 21<br />Submersion 73 (12) 17<br />Cardiac 48 (8) 8 <br />Central nervous system 35 (6) 3<br />Burn 6 (1) 0<br />Poisoning 6 (1) 17<br />Other 63 (10) 10<br />Unknown 0 (3) 6<br /> Data from Young KD, Gausche-Hill M, McClung CD, et al. A prospective, population based<br /> study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary<br /> arrest. Pediatrics 2004;114(1):157–64<br />
  25. 25. Do the differences between asphyxial-mediated and cardiac-mediated injury have clinical relevance?<br />
  26. 26. Clinical implication...<br />Asphyxial injuries- more severe<br />Both: selective vulnerability and delayed neuronal death<br />Asphyxial injuries respond similarly to neuroprotective strategies<br />R.W.Hickey,M.D., M.J.Painter M.D., Brain Injury from Cardiac Arrest in Children; Neurol Clin 24 (2006) 147-158<br />
  27. 27. Comparison of injury from ventricular fibrillation versus asphyxial cardiac arrest<br />R.W.Hickey,M.D., M.J.Painter M.D., Brain Injury from Cardiac Arrest in Children; Neurol Clin 24 (2006) 147-158<br />
  28. 28. Return of Spontaneous Circulation (ROSC)<br />an unnatural pathophysiological state<br /> created by successful CPR<br />
  29. 29. Postresuscitation Disease<br /> 1970’s Dr. Vladimir Negovsky- <br /> recognized pathology caused by whole body ischemia and reperfusion that had a clearly definable cause, time course and constellation of pathological processes.<br />
  30. 30. Postresuscitation Disease<br />“resuscitation”- treatment of shock states in w/c circulation has not ceased<br />“postresuscitation”- the resuscitation has ended<br />
  31. 31. Post-Cardiac Arrest Syndrome<br /> Dr. Negovsky- a second, more complex <br /> phase of resuscitation begins when px regain spontaneous circulation after cardiac arrest.<br />
  32. 32. Phases of Post-Cardiac Arrest syndrome<br />Immediate Postarrest<br />Early Postarrest<br />Intermediate Phase<br />Recovery Phase<br />-Early interventions are most effective<br />-limit ongoing injury<br />-organ support<br />-prevent recurrence<br />-Injury pathways are still active<br /><ul><li>Aggressive treatment instituted
  33. 33. same goals</li></ul>-Prognostication reliable<br />- Outcomes more Predictable<br />
  34. 34. Going back to pxC.J. ...<br />Spontaneously revived after 5 mins<br /> of CPR<br />onset of seizures, anisocoric<br />hypotensive<br />Wheezes, BLF<br />
  35. 35. PATHOPHYSIOLOGY<br />4 Key Components:<br />Post-cardiac arrest brain injury<br />Post-cardiac arrest myocardial dysfunction<br />Systemic ischemia/perfusion response<br />Persistent precipitating pathology<br />-seizures, anisocoria,<br />posturing<br />-peristent hypotension<br />-wheezes BLF<br />R.W. Neumar, M.d., PhD, et.al., ILCOR Consensus Statement Post-Cardiac Arrest syndrome; Circulation Oct. 2008; 118:2452-2483<br />
  36. 36. 4 Key Components:<br />Severity of these disorders is based upon:<br /> - severity of theischemic insult<br /> - the cause of cardiac arrest<br /> - patient’sprearrest state of health<br />Post-cardiac arrest brain injury<br />Post-cardiac arrest myocardial dysfunction<br />Systemic ischemia/perfusion response<br />Persistent precipitating pathology<br />R.W. Neumar, M.d., PhD, et.al., ILCOR Consensus Statement Post-Cardiac Arrest syndrome; Circulation Oct. 2008; 118:2452-2483<br />
  37. 37. POST-CARDIAC ARREST BRAIN INJURY<br />
  38. 38. Post-cardiac arrest brain injury...<br />Common cause of morbidity and mortality<br />68% of out-of-hospital cardiac arrests<br />23% of in-hospital cardiac arrests <br />
  39. 39. From the ER to the PICU...<br />Phenobarbital<br />Phenytoin<br />Midazolam drip<br />Head cooling measures<br />Head elevation- 30 degrees<br />Mannitol <br />Insulin drip<br /><ul><li>had episodes of hypotension, but was eventually stabilized
  40. 40. continued to have seizures </li></ul> Status epilepticus<br /><ul><li>Febrile during the initial hours of stabilization
  41. 41. hyperglycemic</li></ul>-GCS 6 (E1V1M4)<br /><ul><li>Pupils mid-dilated, NRTL
  42. 42. (+) papilledema</li></li></ul><li>PATHOPHYSIOLOGY: BRAIN INJURY<br />CARDIAC ARREST<br />Cardiac arrest<br />Global Ischemia<br />GLOBAL ISCHEMIA<br />DIRECT CELLULAR DAMAGE<br />EDEMA FORMATION<br />ICP<br />CBF<br />
  43. 43. Cellular Mechanisms <br />Excitotoxicity<br />Disturbances in calcium hemostasis<br />Oxidative stress<br />Energy failure<br />Release of subs. triggering cell- death pathways <br />
  44. 44. CEREBRAL PERFUSION<br />Phase IV: Normal Blood Flow<br />
  45. 45. CEREBRAL PERFUSION<br />
  46. 46. CEREBRAL PERFUSION<br />
  47. 47. CEREBRAL PERFUSION<br />
  48. 48. CEREBRAL PERFUSION<br />9 pxs post-arrest...CBF values ranged from 12 to 56 mL/100 g brain tissue/min. <br />2 Children ...clinically brain dead at the time of the study were 0.2 and 2 mL/100 g brain tissue/min.<br />Ashwal S, et al, Xenon Computed tomography measuring cerebral blood flow in the determination of brain death in chlidren. Ann Neurol 1989; 25:539-546<br />CBF values of <10 ml/100 g brain tissue: brain death<br />CBF: >10-15 ml/100 g- potential for survival<br />poor prognosis<br />
  49. 49. Roger’s Textbook of Intensive Care 4th edition<br />
  50. 50.
  51. 51. Other Issues:<br />Pyrexia<br />Hyperglycemia<br />Seizures<br />
  52. 52. Other Issues:<br />In a small case series..patients with temperatures >39°C in the first 72 hoursafter out-of-hospital cardiac arrest had a significantly increasedrisk of brain death..<br />Takasu A, Saitoh D, et al, Hyperthermia: is it an ominous sign after cardiac arrest? Resuscitation. 2001; 49: 273–277.<br />Pyrexia<br />Hyperglycemia<br />Seizures<br />
  53. 53. When serial temperatures were monitored in 151 patients for 48 hours after out-of-hospital cardiac arrest…the risk of unfavorable outcome increasedfor every degree Celsiusthat the peak temperature exceeded 37°C…<br />Zeiner A. et al, . Hyperthermia after cardiac arrest is associated with unfavorable neurologic outcome. Arch intern. Med. 200; 161: 2007-2012<br />Other Issues:<br />Pyrexia<br />Hyperglycemia<br />Seizures<br />
  54. 54. Other Issues:<br />A multicenter retrospective study of patients admittted for out-of-hospitalcardiac arrest reported that a maximal recorded temperature>37.8°C was associated with increased in-hospital mortality...<br />Langhelle A, et al. In-hospital factors associated with improved outcome after out-of-hospital cardiac arrest: a comparison between four regions in Norway. Resuscitation. 2003; 56: 247–263<br />Pyrexia<br />Hyperglycemia<br />Seizures<br />
  55. 55. Other Issues:<br />Hyperglycemiais common in post-cardiac arrest patient and is associated with a poor neurological outcome after out-of-hospital cardiac arrest.<br />. <br />Langhelle A, et al. In-hospital factors associated with improved outcome after out-of-hospital cardiac arrest: a comparison between four regions in Norway. Resuscitation. 2003; 56: 247–263<br />Pyrexia<br />Hyperglycemia<br />Seizures<br />
  56. 56. Other Issues:<br />Animal studies suggest that elevatedpostischemic blood glucose concentrations exacerbate ischemicbrain injury and this effect can be mitigated by intravenous insulin therapy..<br />KatzLM, Wang Y, Ebmeyer U, Radovsky A, Safar P. Glucose plus insulin infusion improves cerebral outcome after asphyxial cardiac arrest. Neuroreport. 1998; 9: 3363–3367.<br />Pyrexia<br />Hyperglycemia<br />Seizures<br />
  57. 57. Other Issues:<br />...Seizures in the post–cardiac arrestperiod are associated with worse prognosis and are likely tobe caused by, as well as exacerbate, post–cardiac arrestbrain injury…<br />Krumholz A, Stern BJ, Weiss HD. Outcome from coma after cardiopulmonary resuscitation: relation to seizures and myoclonus. Neurology. 1988; 38: 401–405.[<br />Pyrexia<br />Hyperglycemia<br />Seizures<br />
  58. 58. Post-cardiac arrest myocardial dysfunction<br />
  59. 59. Post-Cardiac Arrest Myocardial Dysfunction<br />Contributes also to low survival rate<br />Transient global dysfunction<br />Time to recovery: 24-48 hours<br />Kern KB, Hilwig RW, Rhee KH, Berg RA. Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol. 1996; 28: 232–240<br />
  60. 60. …The responsiveness of post–cardiacarrest global myocardial dysfunction to inotropic drugs is welldocumented in animal studies<br />Ruiz-BailénM, et Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation. 2005; 66: 175–181<br />..Cardiac index values reachnadir at 8 hours, improved by 24 hours, return to normal by 72 hours among patients who survived out-of-hospital cardiac arrest..<br />Laurent I, et. Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am CollCardiol. 2002; 40: 2110–2116<br />
  61. 61. Post-Cardiac Arrest Myocardial Dysfunction<br />the severityand duration of post–cardiac arrest myocardial stunningin pediatric animal models are substantially less than in adult<br />
  62. 62. SYSTEMIC ISCHEMIA/ PERFUSION ESPONSE<br />
  63. 63. SYSTEMIC ISCHEMIA/ PERFUSION RESPONSE<br />CARDIAC ARREST<br />OXYGEN<br />METABOLIC SUBSTRATES<br />METABOLITES<br />
  64. 64. SYSTEMIC ISCHEMIA/ PERFUSION RESPONSE<br />CARDIAC ARREST<br />OXYGEN<br />METABOLIC SUBSTRATES<br />METABOLITES<br />
  65. 65. SYSTEMIC ISCHEMIA/ PERFUSION RESPONSE<br />LESS CARDIAC OUTPUT<br />LESS THAN NORMAL DO2<br />INC. SYSTEMIC O2 EXTRACTION<br />CARDIAC ARREST<br />OXYGEN<br />METABOLIC SUBSTRATES<br />CPR<br />METABOLITES<br />
  66. 66. SYSTEMIC ISCHEMIA/ PERFUSION RESPONSE<br />Myocardial dysfunction, pressor-dependent hemodynamic instability<br />Microcirculatory failure<br />INADEQUATE O2 DELIVERY<br />MULTIPLE ORGAN FAILURE<br />INFECTION<br />DEATH<br />ENDOTHELIAL ACTIVATION<br />SYSTEMIC INFLAMMATION<br />OXYGEN DEBT<br />
  67. 67. PERSISTENT PRECIPITATING PATHOLOGY<br />
  68. 68. PERSISTENT PRECIPITATING PATHOLOGY<br />Chronic obstructive pulmonary disease<br />Asthma <br />pneumonia<br />
  69. 69. PERSISTENT PRECIPITATING PATHOLOGY<br />Cardiac arrest secondary to pulmonary physiology<br />worse pulmonary physiology<br />PULMONARY EDEMA<br />INCREASED ALVEOLAR-ARTERIAL OXYGEN GRADIENTS<br />
  70. 70. PERSISTENT PRECIPITATING PATHOLOGY<br />Other precipitating causes requiring specific treatment:<br /> - drug overdose, intoxication<br /> - hypothermia<br />
  71. 71. Therapeutic stRAtegies<br />
  72. 72. THERAPEUTIC STRATEGIES<br />Time-sensitive<br />Occurs in and out the hospital<br />Multiple diverse teams of healthcare providers<br />In all cases, treatment must focuson reversing the pathophysiological manifestations of the post–cardiacarrest syndrome with proper prioritization and timely execution.<br />
  73. 73. THERAPEUTIC STRATEGIES<br />Monitoring<br />Early Hemodynamic Optimization<br />Oxygenation <br />Ventilation<br />Precipitating Pathologies<br />Other Treatment Strategies<br />Long Term Management<br />
  74. 74. Post–Cardiac Arrest Syndrome: Monitoring Options<br />1. General intensive care monitoring<br />    Arterial catheter<br />    Oxygen saturation by pulse oximetry<br />    Continuous ECG<br />    CVP<br />    ScvO2<br />    Temperature (bladder, esophagus)<br />    Urine output<br />    Arterial blood gases<br />    Serum lactate<br />    Blood glucose, electrolytes, CBC, and general blood sampling<br />    Chest radiograph<br />2. More advanced hemodynamic monitoring<br />    Echocardiography<br />    Cardiac output monitoring (either noninvasive or PA catheter)<br />3. Cerebral monitoring<br />    EEG (on indication / ) : early seizure detection and treatment<br />    CT/MRI<br />
  75. 75. II. Early Hemodynamic Optimization<br /><ul><li>Preload
  76. 76. Arterial Oxygen Content
  77. 77. Afterload
  78. 78. Contractility
  79. 79. Systemic O2 Utilization</li></li></ul><li>II. Early Hemodynamic Optimization<br />Goals:<br />CVP: 8-12 mm Hg<br />MAP: 65-100 mm Hg<br />ScvO2 >70%<br />Hct >30% or Hgb >8g/dL???<br />U/O > 1 ml/kg/hr<br />O2 Delivery Index >600mL/min/m2<br />
  80. 80. II. Early Hemodynamic Optimization<br />Primary Therapeutic Tools:<br />Intravenous fluids<br />Inotropes<br />Vasopressors<br />Blood Transfusion<br />
  81. 81. II. Oxygenation<br /><ul><li>Use of FiO2 of 1.0
  82. 82. Hyperoxia harms postischemic neurons, by oxidative stress</li></ul>Most relevant to post–cardiac arrest care, ventilationwith 100% oxygenfor the first hour after ROSC resulted in worseneurological outcomethan immediate adjustment of the FIO2 toproduce an arterial oxygen saturation of 94% to 96%<br />BalanIS,et al, Oximetry-guided reoxygenation improves neurological outcome after experimental cardiac arrest. Stroke. 2006; 37: 3008–3013<br />
  83. 83. IV. Ventilation<br />Hyperventilation<br /> - cerebral ischemia<br /> - inc. intrathoracic pressure<br />Hypoventilation<br /> - hypoxia & hypercarbia ICP<br /> - metabolic acidosis <br />Ventilationshould be adjusted to achieve normocarbia and should be monitoredby regular measurement of arterial blood gas values.<br />
  84. 84. V. Other Persistent Precipitating Pathologies<br />Pulmonary embolism<br />Sepsis<br />Hypoxemia<br />Hypovolemia<br />Hyperkalemia<br />Metabolic disorders<br />Accidental hypothermia<br />Tension pneumothorax<br />Cardiac tamponade<br />Toxins<br />Intoxication<br />Cerebrovascular catastrophes<br />
  85. 85. VI. Other Treatment Modalities<br />Therapeutic Hypothermia<br /><ul><li>Promising strategy in adult patients
  86. 86. Class IIb recommendation from the AHA
  87. 87. Benefits in pediatrics: remains to be determined</li></ul>Benefits:<br />-decreases CBF<br />-suppresseive effects on excitatory neurotransmission and O2 radicals<br />
  88. 88. Evidence in support of the use of therapeutic hypothermia (32-34°C for 12-24 hrs) immediately after resuscitation from cardiac arrest<br />Rogers Textbook of Pediatric Intensive Care 4th Edition<br />
  89. 89. VI. Other Treatment Modalities<br />2. Sedation and Neuromuscular blockade<br /> - reduces oxygen consumption<br />3. Seizure Control and Prevention<br /> - prevent cerebral injury<br />4. Glucose Control<br /> -tight control:4.4-6.1 mmol/L or 80-110mg/dL.<br />
  90. 90. VI. Other Treatment Modalities<br />5. Adrenal Dysfunction<br /> - use of steroids? : no evidence yet<br />6. Renal Failure<br /> - indications for use of RRT’s: same with that of critically ill patients in general<br />7. Infection<br /> - pneumonia by aspiration or mech. Vent.<br />
  91. 91. VII. Long Term Management<br />cardiac and neurologicalrehabilitation and psychiatric disorders<br />nutrition<br />family counseling<br />
  92. 92. Algorithm for the management and treatment of post-circulatory arrest syndrome in infants and children<br />..<br />Roger’s Textbook of Pediatric Intensive care 4th ed<br />
  93. 93. Findings of Prognostic Value<br />Absence of pupillary light reflex<br />Corneal reflex<br />Facial Movements<br />Eye movements<br />Gag<br />Cough<br />Motor Response to painful stimuli<br />
  94. 94. Findings of Prognostic Value<br />Absence of pupillary light reflex<br />Corneal reflex<br />Facial Movements<br />Eye movements<br />Gag<br />Cough<br />Motor Response to painful stimuli<br />
  95. 95. SUMMARY<br />
  96. 96. THANK YOU!<br />

×