SlideShare a Scribd company logo
エレクトリックギター音の
シミュレーション
Simulation of Electric Guitar Response
北村 大地 原囿 正博
D. Kitamura M. Harazono
(高松高専)
はじめに
・電磁気型変換器を用いて弦振動を電気信号に変換
・直流偏奇磁束による負スチフネスの影響から
高調波には非調和性が生じる
・部分音同士の干渉によって弦振動に唸りが発生
・2つのハムバッキング・ピックアップが設置された
エレクトリックギターの出力をシミュレーションする
・実際のエレクトリックギターの出力と比較検討を行う
Hum-bucking Pickup
S
N
N
S
Simulation model for experiment
振動系のシミュレーションモデル
・弦の任意の位置 に永久磁石を設置
→ 吸引力
・弦の振動方程式
・ の位置に変位を与える
),(0 taySFF nt 
)},(){(
),(),(
02
2
2
2
taySFax
x
txy
T
t
txy
n





 ・・①
ax 
Pickup
a

8
8x
振動周波数の解析
・特性方程式
・非調和性 Inharmonicity
・複数の点において負スチフネスが作用する場合
→それぞれの負スチフネスによる非調和性の和と
して近似することができる
0)(sinsinsin)(  a
c
a
c
S
c
cH n





n







1
2log1200
nf
fn
n
・・②

T
c  :波速度
Fig. 1 Inharmonicity of each Partial
非調和性 Inharmonicity
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
Inharmonicity[cent]
252015105
Partial No.
total sum
a=0.1535[m]
a=0.1365[m]
a=0.0510[m]
a=0.0340[m]
出力のシミュレーション
・弦の変位により誘導される起電力
・エレクトリックギターで使用される第3弦のG3音を
シミュレーションの対象とする
・ハムバッキング・ピックアップの特性を再現
→並列した2つの永久磁石からの出力を合成する
・磁束計を用いて各永久磁石の磁束密度を測定
→負スチフネスの比率とする
dt
txdy
txyR
NU
E
m
m
),(
)},({ 2





Fig. 3 Waveform of Simulation Sound
シミュレーション結果
Fig. 2 Waveform of Real Sound
まとめ
・複数の負スチフネスの影響を加味したエレクトリック
ギターのシミュレーションをおこなった。
・エンベロープ全体の大まかな波形を再現できた。
・複数の負スチフネスによるInharmonicityに起因した
唸りも精度よく再現できた。
今後の課題
より正確な負スチフネスの調査、初期条件設定の
考え方の改善について検討を進めてゆく

More Related Content

Viewers also liked

Viewers also liked (12)

擬似ハムバッキングピックアップの弦振動応答 (in Japanese)
擬似ハムバッキングピックアップの弦振動応答 (in Japanese)擬似ハムバッキングピックアップの弦振動応答 (in Japanese)
擬似ハムバッキングピックアップの弦振動応答 (in Japanese)
 
Efficient initialization for nonnegative matrix factorization based on nonneg...
Efficient initialization for nonnegative matrix factorization based on nonneg...Efficient initialization for nonnegative matrix factorization based on nonneg...
Efficient initialization for nonnegative matrix factorization based on nonneg...
 
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
独立性基準を用いた非負値行列因子分解の効果的な初期値決定法(Statistical-independence-based efficient initia...
 
基底変形型教師ありNMFによる実楽器信号分離 (in Japanese)
基底変形型教師ありNMFによる実楽器信号分離 (in Japanese)基底変形型教師ありNMFによる実楽器信号分離 (in Japanese)
基底変形型教師ありNMFによる実楽器信号分離 (in Japanese)
 
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
音響メディア信号処理における独立成分分析の発展と応用, History of independent component analysis for sou...
 
非負値行列分解の確率的生成モデルと 多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
非負値行列分解の確率的生成モデルと多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...非負値行列分解の確率的生成モデルと多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
非負値行列分解の確率的生成モデルと 多チャネル音源分離への応用 (Generative model in nonnegative matrix facto...
 
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
ICASSP2017読み会(関東編)・AASP_L3(北村担当分)
 
Experimental analysis of optimal window length for independent low-rank matri...
Experimental analysis of optimal window length for independent low-rank matri...Experimental analysis of optimal window length for independent low-rank matri...
Experimental analysis of optimal window length for independent low-rank matri...
 
Audio Source Separation Based on Low-Rank Structure and Statistical Independence
Audio Source Separation Based on Low-Rank Structure and Statistical IndependenceAudio Source Separation Based on Low-Rank Structure and Statistical Independence
Audio Source Separation Based on Low-Rank Structure and Statistical Independence
 
統計的独立性と低ランク行列分解理論に基づく ブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
統計的独立性と低ランク行列分解理論に基づくブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...統計的独立性と低ランク行列分解理論に基づくブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
統計的独立性と低ランク行列分解理論に基づく ブラインド音源分離 –独立低ランク行列分析– Blind source separation based on...
 
独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...
独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...
独立性に基づくブラインド音源分離の発展と独立低ランク行列分析 History of independence-based blind source sep...
 
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)TensorFlow を使った機械学習ことはじめ (GDG京都 機械学習勉強会)
TensorFlow を使った 機械学習ことはじめ (GDG京都 機械学習勉強会)
 

More from Daichi Kitamura

More from Daichi Kitamura (11)

独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...
独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...
独立低ランク行列分析に基づく音源分離とその発展(Audio source separation based on independent low-rank...
 
スペクトログラム無矛盾性を用いた 独立低ランク行列分析の実験的評価
スペクトログラム無矛盾性を用いた独立低ランク行列分析の実験的評価スペクトログラム無矛盾性を用いた独立低ランク行列分析の実験的評価
スペクトログラム無矛盾性を用いた 独立低ランク行列分析の実験的評価
 
Windowsマシン上でVisual Studio Codeとpipenvを使ってPythonの仮想実行環境を構築する方法(Jupyter notebookも)
Windowsマシン上でVisual Studio Codeとpipenvを使ってPythonの仮想実行環境を構築する方法(Jupyter notebookも)Windowsマシン上でVisual Studio Codeとpipenvを使ってPythonの仮想実行環境を構築する方法(Jupyter notebookも)
Windowsマシン上でVisual Studio Codeとpipenvを使ってPythonの仮想実行環境を構築する方法(Jupyter notebookも)
 
独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...
独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...
独立低ランク行列分析に基づくブラインド音源分離(Blind source separation based on independent low-rank...
 
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
独立深層学習行列分析に基づく多チャネル音源分離の実験的評価(Experimental evaluation of multichannel audio s...
 
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
独立深層学習行列分析に基づく多チャネル音源分離(Multichannel audio source separation based on indepen...
 
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
近接分離最適化によるブラインド⾳源分離(Blind source separation via proximal splitting algorithm)
 
Blind source separation based on independent low-rank matrix analysis and its...
Blind source separation based on independent low-rank matrix analysis and its...Blind source separation based on independent low-rank matrix analysis and its...
Blind source separation based on independent low-rank matrix analysis and its...
 
模擬ハムバッキング・ピックアップの弦振動応答 (in Japanese)
模擬ハムバッキング・ピックアップの弦振動応答 (in Japanese)模擬ハムバッキング・ピックアップの弦振動応答 (in Japanese)
模擬ハムバッキング・ピックアップの弦振動応答 (in Japanese)
 
Evaluation of separation accuracy for various real instruments based on super...
Evaluation of separation accuracy for various real instruments based on super...Evaluation of separation accuracy for various real instruments based on super...
Evaluation of separation accuracy for various real instruments based on super...
 
Divergence optimization based on trade-off between separation and extrapolati...
Divergence optimization based on trade-off between separation and extrapolati...Divergence optimization based on trade-off between separation and extrapolati...
Divergence optimization based on trade-off between separation and extrapolati...
 

Recently uploaded

Recently uploaded (6)

本の感想共有会「データモデリングでドメインを駆動する」本が突きつける我々の課題について
本の感想共有会「データモデリングでドメインを駆動する」本が突きつける我々の課題について本の感想共有会「データモデリングでドメインを駆動する」本が突きつける我々の課題について
本の感想共有会「データモデリングでドメインを駆動する」本が突きつける我々の課題について
 
今年こそ始めたい!SQL超入門 セミナー資料 2024年5月22日 富士通クラウドミートアップ
今年こそ始めたい!SQL超入門 セミナー資料 2024年5月22日 富士通クラウドミートアップ今年こそ始めたい!SQL超入門 セミナー資料 2024年5月22日 富士通クラウドミートアップ
今年こそ始めたい!SQL超入門 セミナー資料 2024年5月22日 富士通クラウドミートアップ
 
Linuxサーバー構築 学習のポイントと環境構築 OSC2024名古屋 セミナー資料
Linuxサーバー構築 学習のポイントと環境構築 OSC2024名古屋 セミナー資料Linuxサーバー構築 学習のポイントと環境構築 OSC2024名古屋 セミナー資料
Linuxサーバー構築 学習のポイントと環境構築 OSC2024名古屋 セミナー資料
 
今さら聞けない人のためのDevOps超入門 OSC2024名古屋 セミナー資料
今さら聞けない人のためのDevOps超入門 OSC2024名古屋  セミナー資料今さら聞けない人のためのDevOps超入門 OSC2024名古屋  セミナー資料
今さら聞けない人のためのDevOps超入門 OSC2024名古屋 セミナー資料
 
【登壇資料】スタートアップCTO経験からキャリアについて再考する CTO・VPoEに聞く by DIGGLE CTO 水上
【登壇資料】スタートアップCTO経験からキャリアについて再考する  CTO・VPoEに聞く by DIGGLE CTO 水上【登壇資料】スタートアップCTO経験からキャリアについて再考する  CTO・VPoEに聞く by DIGGLE CTO 水上
【登壇資料】スタートアップCTO経験からキャリアについて再考する CTO・VPoEに聞く by DIGGLE CTO 水上
 
人的資本経営のための地理情報インテリジェンス 作業パターン分析と心身状態把握に関する実証事例
人的資本経営のための地理情報インテリジェンス 作業パターン分析と心身状態把握に関する実証事例人的資本経営のための地理情報インテリジェンス 作業パターン分析と心身状態把握に関する実証事例
人的資本経営のための地理情報インテリジェンス 作業パターン分析と心身状態把握に関する実証事例
 

エレクトリックギター音のシミュレーション (in Japanese)