-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Crowdsourcing represents a significant source of data which needs to be analyzed and interpreted. These tasks influence the quality of the output as well as the efficiency of the process. Visualization proved to be an effective way of dealing with large amount of data. In this paper we propose a visualization analytic model in the context of the CrowdTruth framework and CrowdTruth metrics for optimizing the crowdsourcing process and improving its data quality. The requirements for the dynamic, scalable and interactive visualizations were extracted through literature and interviews with users of the framework.
Be the first to like this
Login to see the comments