SlideShare a Scribd company logo
1 of 5
Download to read offline
Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons
J.-P. Bocquet,1
D. Moricciani,2
V. Bellini,3
M. Beretta,4
L. Casano,2
A. D’Angelo,5
R. Di Salvo,2
A. Fantini,5
D. Franco,5
G. Gervino,6
F. Ghio,7
G. Giardina,8
B. Girolami,7
A. Giusa,3
V. G. Gurzadyan,9,10
A. Kashin,9
S. Knyazyan,9
A. Lapik,11
R. Lehnert,12,* P. Levi Sandri,4
A. Lleres,1
F. Mammoliti,3
G. Mandaglio,8
M. Manganaro,8
A. Margarian,9
S. Mehrabyan,9
R. Messi,5
V. Nedorezov,11
C. Perrin,1
C. Randieri,3
D. Rebreyend,1,†
N. Rudnev,11
G. Russo,3
C. Schaerf,5
M. L. Sperduto,3
M. C. Sutera,3
A. Turinge,11
and V. Vegna5
1
LPSC, UJF Grenoble 1, CNRS/IN2P3, INPG, 53 avenue des Martyrs 38026 Grenoble, France
2
INFN Sezione di Roma TV, 00133 Roma, Italy
3
INFN Sezione di Catania and Universita` di Catania, 95100 Catania, Italy
4
INFN Laboratori Nazionali di Frascati, 00044 Frascati, Italy
5
INFN Sezione di Roma TV and Universita` di Roma ‘‘Tor Vergata,’’ 00133 Roma, Italy
6
INFN Sezione di Torino and Universita` di Torino, 10125 Torino, Italy
7
INFN Sezione di Roma I and Istituto Superiore di Sanita`, 00161 Roma, Italy
8
INFN Sezione di Catania and Universita` di Messina, 98166 Messina, Italy
9
Yerevan Physics Institute, 375036 Yerevan, Armenia
10
Yerevan State University, 375025 Yerevan, Armenia
11
Institute for Nuclear Research, 117312 Moscow, Russia
12
ICN, Universidad Nacional Auto´noma de Me´xico, A. Postal 70-543, 04510 Me´xico D.F., Mexico
(Received 22 February 2010; published 17 June 2010)
The possibility of anisotropies in the speed of light relative to the limiting speed of electrons is
considered. The absence of sidereal variations in the energy of Compton-edge photons at the European
Synchrotron Radiation Facility’s GRAAL facility constrains such anisotropies representing the first
nonthreshold collision-kinematics study of Lorentz violation. When interpreted within the minimal
standard-model extension, this result yields the two-sided limit of 1:6 Â 10À14 at 95% confidence level
on a combination of the parity-violating photon and electron coefficients ð~oþÞYZ
, ð~oþÞZX
, cTX, and cTY.
This new constraint provides an improvement over previous bounds by 1 order of magnitude.
DOI: 10.1103/PhysRevLett.104.241601 PACS numbers: 11.30.Cp, 12.20.Fv, 29.20.Àc
Properties of the speed of light c, such as isotropy and
constancy irrespective of the motion of the source, play a
key role in physics. For example, they are instrumental for
both the conceptual foundations as well as the experimen-
tal verification of special relativity, and they currently
provide the basis for the definition of length in the
International System of Units. It follows that improved
tests of, e.g., the isotropy of light propagation remain of
fundamental importance in physics.
Experimental searches for anisotropies in c are further
motivated by theoretical studies in the context of quantum
gravity: it has recently been realized that a number of
approaches to Planck-scale physics, such as strings,
spacetime-foam models, noncommutative field theory,
and varying scalars, can accommodate minuscule viola-
tions of Lorentz symmetry [1]. At presently attainable
energies, such Lorentz-breaking effects can be described
by the standard-model extension, an effective field theory
that incorporates both the usual standard model and gen-
eral relativity as limiting cases [2]. To date, the minimal
standard-model extension (MSME), which contains only
relevant and marginal operators, has provided the basis for
numerous tests of special relativity in a wide variety of
physical systems [3,4].
In this work, we will study photons and electrons in an
environment where gravity is negligible. Lorentz violation
is then described by the single-flavor QED limit of the flat-
spacetime MSME [2,5]. This limit contains the real,
spacetime-constant MSME coefficients ðkFÞ
, ðkAFÞ
,
b
, c
, d
, and H
, which control the extent of differ-
ent types of Lorentz and CPT violation. Note, however,
that c and ~k
 ðkFÞ
 are observationally indistin-
guishable in a photon-electron system: suitable coordinate
rescalings freely transform the ~k
and c parameters into
one another [5,6]. Physically, this represents the fact that
the speed of light is measured relative to the speed of
electrons. We exploit this freedom by selecting the specific
scaling c
¼ 0 in intermediate calculations. However, we
reinstate this coefficient in the final result for generality.
From a phenomenological perspective, the dominant
MSME coefficient is kF, which causes a direction- and
polarization-dependent speed of light [6]. Various of its
components have been tightly bounded with astrophysical
observations [7], Michelson-Morley tests [4,8], and col-
lider physics [5]. We will bound the ~0þ piece of ~k
,
which is an antisymmetric 3 Â 3 matrix; it currently obeys
the weakest limits, so all other MSME coefficients can be
set to zero in what follows. A MSME analysis then reveals
PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S
week ending
18 JUNE 2010
0031-9007=10=104(24)=241601(5) 241601-1 Ó 2010 The American Physical Society
that the photon’s dispersion relation is modified:
! ¼ ð1 À ~ Á ^Þ þ Oð2
Þ: (1)
Here,  ¼ ð!;  ^Þ denotes the photon four-momentum
and ^ is a unit three-vector. The three components of ~0þ
have been assembled into the form of a three-vector: ~ 
ðð~0þÞ23
; ð~0þÞ31
; ð~0þÞ12
Þ  ðX; Y; ZÞ. This vector
specifies a preferred direction, which violates Lorentz
symmetry; it can be interpreted as generating a direction-
dependent refractive index of the vacuum nð ^Þ ’ 1 þ ~ Á
^. The electron’s dispersion relation EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2
p
remains unaltered with our choice of coordinate scaling.
The dispersion relation (1) shows that for a given , the
photon energy ! depends on the direction ^ of the photon’s
three-momentum, which exposes the ~0þ anisotropies.
Reversing the direction of ^ establishes parity violation
in these anisotropies. The basic experimental idea is that in
a terrestrial laboratory the photon three-momentum in a
Compton-scattering process changes direction due to
Earth’s rotation. The photons are thus affected by the
anisotropies in Eq. (1) leading to sidereal effects in the
kinematics of the process. Precision measurements of
Compton scattering of ultrarelativistic electrons circulating
in a high-energy accelerator could help reveal such effects.
In a previous paper [9], we have established the high
sensitivity of a method based on the analysis of the
Compton-edge (CE) energy (i.e., the minimal energy) of
the scattered electrons using the GRAAL beam line [10] at
the European Synchrotron Radiation Facility (ESRF,
Grenoble, France). The present work utilizes dedicated
GRAAL data and an improved setup to extract a competi-
tive bound on ~0þ at the 10À14
level. Note that for the first
time, kinematical nonthreshold physics in a particle colli-
sion is exploited to test Lorentz symmetry: previous studies
have employed predictions involving thresholds, such as
shifts in thresholds (e.g., 

 ! eþeÀ), the presence of
novel processes above certain thresholds (e.g., photon
decay), or the absence of conventional collisions above
certain thresholds (e.g., neutron stability) [11].
The experimental setup at GRAAL involves counter-
propagating incoming electrons and photons with three-
momenta ~p ¼ p ^p and ~ ¼ À ^p, respectively. The con-
ventional CE then occurs for outgoing photons that are
backscattered at 180
, so that the kinematics is essentially
one dimensional along the beam direction ^p. Energy con-
servation for this process reads
EðpÞ þ ð1 þ ~ Á ^pÞ ¼ Eðp À  À 0Þ þ ð1 À ~ Á ^pÞ0;
(2)
where ~0
¼ 0 ^p is the three-momentum of the CE photon,
and three-momentum conservation has been implemented.
At leading order, the physical solution of Eq. (2) is
0
’ CE

1 þ
2
2
ð1 þ 4
=mÞ2
~ Á ^p

: (3)
Here, CE ¼ 4
2
1þ4
=m denotes the conventional value of the
CE energy. Given the actual experimental data of m ¼
511 keV, p ¼ 6030 MeV, and  ¼ 3:5 eV, yields 
 ’
p=m ¼ 11 800 and CE ¼ 1473 MeV. The numerical
value of the factor in front of ~ Á ^p is about 1:6 Â 108. It
is this large amplification factor (essentially given by 
2)
that yields the exceptional sensitivity of the CE to ~0þ.
For comparisons between tests, MSME coefficients are
conventionally specified in the Sun-centered inertial frame
(X, Y, Z) [4], in which ~ is constant, ^Z is parallel to Earth’s
rotation axis, and terrestrial laboratories rotate with a
frequency  ’ 2=ð23 h 56 minÞ about ^Z. Hence, ^pðtÞ ’
ð0:9 cost; 0:9 sint; 0:4Þ, where the beam direction of
GRAAL has been used, and the time t ¼ 0 has been chosen
appropriately. Then, Eq. (3) becomes
0 ’ ~CE þ 0:91
2
2
CE
ð1 þ 4
=mÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X þ 2
Y
q
sint: (4)
Here, we have absorbed the time-independent Z piece
into ~CE and dropped an irrelevant phase. Equation (4)
clearly exposes the possibility of sidereal variations in the
CE and represents our main theoretical result.
Small deviations ’ from exactly counter-propagating
incoming photons and electrons as well as the Lorentz-
violating dispersion relation (1) itself can place the CE
direction slightly off-axis. Moreover, Lorentz violation can
affect laser lines as well as the spectrometer’s B field.
These effects have been carefully studied and shown to
be negligible, so the primary Lorentz-violating effect in the
present context is given by Eq. (4).
Incoming photons are generated by a high-power Ar
laser located about 40 m from the intersection region.
The laser beam enters the vacuum via a MgF window
and is then reflected by an Al-coated Be mirror towards
the 6.03 GeV electron beam. The laser and electron beams
overlap over a 6.5 m long straight section. Photons are
finally absorbed in a four-quadrant calorimeter, which
allows the stabilization of the laser-beam barycenter to
0.1 mm. This level of stability is necessary and corresponds
to a major improvement of the set-up relative to our
previous result. Because of their energy loss, scattered
electrons are extracted from the main beam in the magnetic
dipole following the straight section. Their position can
then be accurately measured in the so-called tagging sys-
tem (Fig. 1) located 50 cm after the exit of the dipole. This
system plays the role of a magnetic spectrometer from
which we can infer the electron momentum. The tagging
system is composed of a position-sensitive Si -strip
detector (128 strips of 300 m pitch, 500 m thick) asso-
ciated to a set of fast plastic scintillators for timing infor-
mation and triggering of the data acquisition. These
detectors are placed inside a movable box shielded against
PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S
week ending
18 JUNE 2010
241601-2
the huge x-ray background generated in the dipole. A
spring system ensures that the position-sensitive Si detec-
tor always touches the box end. As will be discussed later,
the x-ray induced heat load is the origin of sizable varia-
tions in the box temperature, correlated with the ESRF
beam intensity. This produces a continuous drift of the
detector due to the dilation of the box.
A typical Si -strip count spectrum near the CE is
shown in Fig. 2 for the multiline UV mode of the laser
used in this measurement. This setting corresponds to three
groups of lines centered around 364, 351, and 333 nm,
which are clearly resolved. The fitting function, also plot-
ted, is based on the sum of three error functions plus
background and includes six free parameters. The CE
position, xCE, is taken as the location of the central line.
The steep slope of the CE permits an excellent measure-
ment of xCE with a resolution of $3 m for a statistics of
about 106 counts. The specially designed VIRTEX-II elec-
tronics [12] allowed us to collect such statistics every 30 s,
as compared to a few hours in our previous measurement.
During a week of data-taking in July 2008, a total of
14 765 CE spectra have been recorded. A sample of the
time series of the CE positions relative to the ESRF beam
covering 24 h is displayed in Fig. 3(c), along with the
tagging-box temperature [Fig. 3(b)] and the ESRF beam
intensity [Fig. 3(a)]. The sharp steps present in Fig. 3(a)
correspond to the twice-a-day refills of the ESRF ring. The
similarity of the temperature and CE spectra combined
with their correlation with the ESRF beam intensity led
us to interpret the continuous and slow drift of the CE
positions as a result of the tagging-box dilation. To remove
this trivial time dependence, we have fitted our raw data
with the function
xfitðtÞ ¼ x0 þ a½1 À expðÀt=1ÞŠ expðÀt=2Þ; (5)
where t ¼ 0 is chosen appropriately, and 1, 2 are time
constants describing heat diffusion and ESRF beam-
intensity decay, respectively. These two constants could
be extracted directly from the temperature data [Fig. 3(b)].
Consequently, each time series between two refills (12 h)
has been fitted with only two free parameters: the position
offset x0 and the amplitude a. The corrected and final
spectrum, obtained by subtraction of the fitted function
from the raw data, is plotted in Fig. 3(d).
This correction procedure is critical since its amplitude
is 3 orders of magnitude larger than the extracted limit. To
test its validity, the same analysis has been applied to
simulated data obtained by adding a known harmonic
oscillation to the experimental data. This study has shown
that the signal amplitude would indeed be attenuated by a
factor ranging from 1.3 to 2.3 depending on the phase.
The usual equation for the deflection of charges in a
magnetic field together with momentum conservation in
Compton scattering determines the relation between the
CE position xCE and the photon three-momentum 0:
xCE ¼
0
p À 0 C; (6)
where p is again the momentum of the ESRF beam. The
constant C is determined by the trajectory of the electron; it
therefore depends on the B-field magnitude and geometri-
cal factors. Equation (6) can be used to derive the CE
displacement resulting from a change in 0:
counts(in104)
1.35
48
0
10
30
20
50 52 54 x (mm)
1.40 1.45 1.50 ω (GeV)
CE
FIG. 2. Si -strip count spectrum near the CE and the fitting
function (see text) vs position x and photon energy !. The three
edges corresponding to the lines 364, 351, and 333 nm are
clearly visible. The CE position xCE is the location of the central
line and is measured with a typical accuracy of 3 m.
a)
b)
c)
d)
6 12 18 t (h)
200
180
160
43
42
52.93
52.90
0.015
-0.015
I(mA)T(°C)xCE(mm)(mm)
FIG. 3. Time evolution over a day of (a) ESRF beam intensity,
(b) tagging-box temperature, (c) CE position and fitted curve
[Eq. (5)], and (d)  ¼ xCE À xfit. The error bars on position
measurements are directly given by the CE fit.
ESRFbeam
scattered electrons xCE x
x-ray shielding
Si µ-strip detector
scintillators
FIG. 1. Schematic drawing of the tagging system.
PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S
week ending
18 JUNE 2010
241601-3
ÁxCE
xCE
¼
p
p À CE
Á0
0 : (7)
To search for a modulation, the 14 765 data points have
been folded modulo a sidereal day and divided in 24 bins
[Fig. 4]. The error bars are purely statistical and in agree-
ment with a null signal (2
¼ 1:04 for the unbinned his-
togram). Moreover, the histogram has been Fourier
analyzed and provides no evidence for a harmonic oscil-
lation at the sidereal frequency. Hence, an upper bound on
a hypothetical oscillation can be extracted. To exclude the
signal hypothesis A sinðt þ Þ at a given confidence
level (C.L.), a statistical analysis has been developed. In
particular, we have chosen the Bayesian approach [13],
which allows us to take into account the -dependent
attenuation factor due to our correction procedure in a
natural way. The probability density function for the am-
plitude of the signal is generated by incorporating directly
the attenuation factor in the likelihood function before
integration over . The resulting upper bound is A  2:5 Â
10À6 at 95% C.L.
We next consider effects that could conceal an actual
sidereal signal. Besides a direct oscillation of the orbit, the
two quantities that may affect the result appear in Eq. (6):
the dipole magnetic field via C and the momentum of the
ESRF beam p. All these parameters are linked to the
machine operation, and their stability follows directly
from the accelerator performance. At the ESRF, the elec-
tron orbit is precisely monitored to better than a m, and
the beam is maintained on its so-called golden orbit by
adjustment of the rf-generator frequency. Access to the
accelerator database has allowed us to analyze the time
series of both the dipole magnetic field and the orbit
position close to our tagging system. We have verified
that the fluctuations of either parameter do not exceed
10À6. The momentum stability of the ESRF beam, given
by
R
Bdl, is then ensured to be better than 10À6. We
therefore estimate that a sidereal oscillation related to
one of the machine parameters cannot exceed a few parts
in 107
and is negligible.
We can now conclude that our upper bound on a hypo-
thetical sidereal oscillation of the CE energy is
Á0
=0
 2:5 Â 10À6
ð95% C:L:Þ; (8)
yielding the competitive limit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X þ 2
Y
q
 1:6 Â 10À14
(95% C.L.) with Eq. (4). Reinstating MSME notation and
the electron coefficients for generality gives at 95% C.L.
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2cTX À ð~0þÞYZ
Š2
þ ½2cTY À ð~0þÞZX
Š2
q
 1:6 Â 10À14
(9)
improving previous bounds by a factor of 10. The other,
omitted MSME coefficients leave this limit unaffected.
In summary, we have made use of the GRAAL 
-ray
beam produced by inverse Compton scattering off the high-
energy electrons circulating in the ESRF ring to test the
isotropy of light propagation. This represents the first test
of special relativity via a nonthreshold kinematics effect in
a particle collision. Our measurement, based on the search
for sidereal modulations in the CE of the scattered elec-
trons, shows no evidence for a signal. Interpreting our
result within the MSME, we have obtained a competitive
upper bound on a combination of coefficients of the
MSME’s QED sector at the 10À14
level.
It is a pleasure to thank the ESRF staff for the smooth
operation of the storage ring. We are especially indebted to
L. Farvacque and J. M. Chaize for fruitful discussions and
access to the machine database. Contributions from G.
Angeloni (VIRTEX-II electronics), G. Nobili (technical
support), and O. Zimmermann (laser stabilization loop)
are greatly appreciated. R. Lehnert acknowledges support
from CONACyT under Grant No. 55310.
*ralf.lehnert@nucleares.unam.mx
†
rebreyend@lpsc.in2p3.fr
[1] See, e.g., V. A. Kostelecky´ and S. Samuel, Phys. Rev. D
39, 683 (1989); J. Alfaro, H. A. Morales-Te´cotl, and L. F.
Urrutia, Phys. Rev. Lett. 84, 2318 (2000); S. M. Carroll
et al., Phys. Rev. Lett. 87, 141601 (2001); J. D. Bjorken,
Phys. Rev. D 67, 043508 (2003); V. A. Kostelecky´, R.
Lehnert, and M. J. Perry, Phys. Rev. D 68, 123511
(2003); F. R. Klinkhamer and C. Rupp, Phys. Rev. D 70,
045020 (2004); N. Arkani-Hamed et al., J. High Energy
Phys. 07 (2005) 029.
[2] D. Colladay and V. A. Kostelecky´, Phys. Rev. D 55, 6760
(1997); Phys. Rev. D 58, 116002 (1998); V. A. Kostelecky´
and R. Lehnert, Phys. Rev. D 63, 065008 (2001); V. A.
Kostelecky´, Phys. Rev. D 69, 105009 (2004).
[3] For recent reviews see, e.g., Proceedings of the First
Meeting on CPT and Lorentz Symmetry, Bloomington,
IN, 1998, edited by V. A. Kostelecky´ (World Scientific,
Singapore, 1999); Proceedings of the Second Meeting on
CPTand Lorentz Symmetry, Bloomington, IN, 2001, edited
by V. A. Kostelecky´ (World Scientific, Singapore, 2002);
Proceedings of the Third Meeting on CPT and Lorentz
Symmetry, Bloomington, IN, 2004, edited by V. A.
Kostelecky´ (World Scientific, Singapore, 2005);
Proceedings of the Fourth Meeting on CPT and Lorentz
6 12 18 t (h)
+10-5
-10-5
0∆ ′
′
FIG. 4. Full set of data folded modulo a sidereal day (24 bins).
The error bars are purely statistical and agree with the dispersion
of the data points (2 ¼ 1:04 for the unbinned histogram). The
shaded area corresponds to the region of nonexcluded signal
amplitudes.
PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S
week ending
18 JUNE 2010
241601-4
Symmetry, Bloomington, IN, 2007, edited by V. A.
Kostelecky´ (World Scientific, Singapore, 2008); R.
Bluhm, Lect. Notes Phys. 702, 191 (2006); D. M.
Mattingly, Living Rev. Relativity 8, 5 (2005) http://
relativity.livingreviews.org/Articles/lrr-2005-5/ .
[4] V. A. Kostelecky´ and N. Russell, arXiv:0801.0287.
[5] M. A. Hohensee et al., Phys. Rev. Lett. 102, 170402
(2009); Phys. Rev. D 80, 036010 (2009); B. D. Altschul,
Phys. Rev. D 80, 091901(R) (2009).
[6] V. A. Kostelecky´ and M. Mewes, Phys. Rev. Lett. 87,
251304 (2001); Phys. Rev. D 66, 056005 (2002).
[7] V. A. Kostelecky´ and M. Mewes, Phys. Rev. Lett. 97,
140401 (2006).
[8] S. Herrmann et al., in Ref. [3], Vol. IV; Ch. Eisele, A. Y.
Nevsky, and S. Schiller, Phys. Rev. Lett. 103, 090401
(2009); M. E. Tobar et al., Phys. Rev. D 80, 125024
(2009).
[9] V. G. Gurzadyan et al., Mod. Phys. Lett. A 20, 19 (2005).
[10] A description of the GRAAL facility can be found in O.
Bartalini et al. (GRAAL Collaboration), Eur. Phys. J. A
26, 399 (2005) and references therein.
[11] R. Lehnert, Phys. Rev. D 68, 085003 (2003).
[12] G. Angeloni, Universita` di Roma ‘‘Tor Vergata’’ internal
report.
[13] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1
(2008).
PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S
week ending
18 JUNE 2010
241601-5

More Related Content

What's hot

28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...Cristian Randieri PhD
 
Es2014sep05 684
Es2014sep05 684Es2014sep05 684
Es2014sep05 684nsfphyman
 
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...Sérgio Sacani
 
Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Daniel Riley
 
[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)
[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)
[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)Raisa Sadat
 
Magnetic Materials Assignment Help
Magnetic Materials Assignment HelpMagnetic Materials Assignment Help
Magnetic Materials Assignment HelpEdu Assignment Help
 
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaNonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaShiv Arjun
 
A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...
A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...
A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...Pim Piepers
 
ACS SWRM Conference 2016
ACS SWRM Conference 2016ACS SWRM Conference 2016
ACS SWRM Conference 2016Brett Casserly
 
thesis booklet.fin
thesis booklet.finthesis booklet.fin
thesis booklet.finN S
 
Turbulent heating in_galaxy_clusters_brightest_in_x_rays
Turbulent heating in_galaxy_clusters_brightest_in_x_raysTurbulent heating in_galaxy_clusters_brightest_in_x_rays
Turbulent heating in_galaxy_clusters_brightest_in_x_raysSérgio Sacani
 
Maxwell Boltzmann Velocity Distribution
Maxwell Boltzmann Velocity DistributionMaxwell Boltzmann Velocity Distribution
Maxwell Boltzmann Velocity DistributionVishwajeet Jadeja
 
Vibrational analysis of trans azobenzene
Vibrational analysis of trans azobenzeneVibrational analysis of trans azobenzene
Vibrational analysis of trans azobenzeneJohn Clarkson
 
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...IOSRJAP
 
Quantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavityQuantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavityGabriel O'Brien
 

What's hot (17)

28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
28 Measurement of η photoproduction on the proton from threshold to 1500-MeV ...
 
Nature12917
Nature12917Nature12917
Nature12917
 
Es2014sep05 684
Es2014sep05 684Es2014sep05 684
Es2014sep05 684
 
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...
Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of el...
 
Spectroscopy of Ru109-112
Spectroscopy of Ru109-112Spectroscopy of Ru109-112
Spectroscopy of Ru109-112
 
[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)
[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)
[Richard c. tolman]_relativity,_thermodynamics_and(book_fi.org)
 
Magnetic Materials Assignment Help
Magnetic Materials Assignment HelpMagnetic Materials Assignment Help
Magnetic Materials Assignment Help
 
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-PlasmaNonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
Nonplanar-Ion-acoustic-Waves-in-a-Relativistically-Degenerate-Quantum-Plasma
 
A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...
A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...
A 5 fluid hydrodynamic approach to model the solar system-interstellar medium...
 
ACS SWRM Conference 2016
ACS SWRM Conference 2016ACS SWRM Conference 2016
ACS SWRM Conference 2016
 
thesis booklet.fin
thesis booklet.finthesis booklet.fin
thesis booklet.fin
 
Turbulent heating in_galaxy_clusters_brightest_in_x_rays
Turbulent heating in_galaxy_clusters_brightest_in_x_raysTurbulent heating in_galaxy_clusters_brightest_in_x_rays
Turbulent heating in_galaxy_clusters_brightest_in_x_rays
 
Maxwell Boltzmann Velocity Distribution
Maxwell Boltzmann Velocity DistributionMaxwell Boltzmann Velocity Distribution
Maxwell Boltzmann Velocity Distribution
 
Vibrational analysis of trans azobenzene
Vibrational analysis of trans azobenzeneVibrational analysis of trans azobenzene
Vibrational analysis of trans azobenzene
 
FinalReport
FinalReportFinalReport
FinalReport
 
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
Systematic Study Multiplicity Production Nucleus – Nucleus Collisions at 4.5 ...
 
Quantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavityQuantum jumps of light recording the birth and death of a photon in a cavity
Quantum jumps of light recording the birth and death of a photon in a cavity
 

Viewers also liked

30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...
30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...
30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...Cristian Randieri PhD
 
14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...
14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...
14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...Cristian Randieri PhD
 
23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...
23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...
23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...Cristian Randieri PhD
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...Cristian Randieri PhD
 
Alessandro manzoni , lo juventino!
Alessandro manzoni , lo juventino!Alessandro manzoni , lo juventino!
Alessandro manzoni , lo juventino!aurora98
 
Галд шатдаггүй дулаалгын материал
Галд шатдаггүй дулаалгын материалГалд шатдаггүй дулаалгын материал
Галд шатдаггүй дулаалгын материалdaki ch
 
EXPLORACIÓ ESPACIAL
EXPLORACIÓ ESPACIALEXPLORACIÓ ESPACIAL
EXPLORACIÓ ESPACIALaviacionscj
 
Las gemelas. natalia y janhery
Las gemelas. natalia y janheryLas gemelas. natalia y janhery
Las gemelas. natalia y janheryalejandragomezc
 
Развлекательный фреш
Развлекательный фрешРазвлекательный фреш
Развлекательный фрешYaroslav Sobko
 
F1i s 2013 uae national final newsletter 2
F1i s 2013 uae national final   newsletter 2F1i s 2013 uae national final   newsletter 2
F1i s 2013 uae national final newsletter 2sherryseif
 
Decimals longitudrectes21 1_13
Decimals longitudrectes21 1_13Decimals longitudrectes21 1_13
Decimals longitudrectes21 1_13jsole125
 
De kerncijfers van NMBS in 2014
De kerncijfers van NMBS in 2014De kerncijfers van NMBS in 2014
De kerncijfers van NMBS in 2014NMBS
 
The Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry Ghosts
The Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry GhostsThe Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry Ghosts
The Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry GhostsMark Brady
 
Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...
Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...
Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...Cristian Randieri PhD
 
51 Disintegration of 12C nuclei by 700–1500 MeV photons - Nuclear Physics A,...
51 Disintegration of 12C nuclei by 700–1500 MeV photons -  Nuclear Physics A,...51 Disintegration of 12C nuclei by 700–1500 MeV photons -  Nuclear Physics A,...
51 Disintegration of 12C nuclei by 700–1500 MeV photons - Nuclear Physics A,...Cristian Randieri PhD
 
37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...
37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...
37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...Cristian Randieri PhD
 

Viewers also liked (19)

30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...
30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...
30 First measurement of the Σ beam asymmetry in η photoproduction on the neut...
 
14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...
14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...
14 A Profibus-based Control System for Nuclear Physics Applications - The 6th...
 
23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...
23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...
23 Eta Photoproduction Off the Neutron at GRAAL - Proceedings of Workshop on ...
 
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
24 Polarization observable measurements for γp → K+Λ and γp → K+Σ for energie...
 
Alessandro manzoni , lo juventino!
Alessandro manzoni , lo juventino!Alessandro manzoni , lo juventino!
Alessandro manzoni , lo juventino!
 
Галд шатдаггүй дулаалгын материал
Галд шатдаггүй дулаалгын материалГалд шатдаггүй дулаалгын материал
Галд шатдаггүй дулаалгын материал
 
Vision
VisionVision
Vision
 
EXPLORACIÓ ESPACIAL
EXPLORACIÓ ESPACIALEXPLORACIÓ ESPACIAL
EXPLORACIÓ ESPACIAL
 
Las gemelas. natalia y janhery
Las gemelas. natalia y janheryLas gemelas. natalia y janhery
Las gemelas. natalia y janhery
 
Развлекательный фреш
Развлекательный фрешРазвлекательный фреш
Развлекательный фреш
 
F1i s 2013 uae national final newsletter 2
F1i s 2013 uae national final   newsletter 2F1i s 2013 uae national final   newsletter 2
F1i s 2013 uae national final newsletter 2
 
Decimals longitudrectes21 1_13
Decimals longitudrectes21 1_13Decimals longitudrectes21 1_13
Decimals longitudrectes21 1_13
 
De kerncijfers van NMBS in 2014
De kerncijfers van NMBS in 2014De kerncijfers van NMBS in 2014
De kerncijfers van NMBS in 2014
 
The Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry Ghosts
The Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry GhostsThe Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry Ghosts
The Enchanted Loom reviews Gabor Mate's book, In the Realm of Hungry Ghosts
 
Rinoceronte negro
Rinoceronte negroRinoceronte negro
Rinoceronte negro
 
Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...
Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...
Intellisystem Technologies - Collezione riviste anno 2003 - Magazine Book Col...
 
51 Disintegration of 12C nuclei by 700–1500 MeV photons - Nuclear Physics A,...
51 Disintegration of 12C nuclei by 700–1500 MeV photons -  Nuclear Physics A,...51 Disintegration of 12C nuclei by 700–1500 MeV photons -  Nuclear Physics A,...
51 Disintegration of 12C nuclei by 700–1500 MeV photons - Nuclear Physics A,...
 
37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...
37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...
37 Latest results from GRAAL collaboration - Chinese Physics C (HEP & NP), De...
 
conduct disorder
conduct disorderconduct disorder
conduct disorder
 

Similar to 41 Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons - Physical Review Letters, June 2010

The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...IJERA Editor
 
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...Myroslava Omelchenko
 
Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...
Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...
Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...Ryan Stillwell, Ph.D.
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsRyutaro Okuma
 
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...Cristian Randieri PhD
 
48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...
48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...
48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...Cristian Randieri PhD
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringTodd Hodges
 
Study of semiconductor with positron
Study of semiconductor with positronStudy of semiconductor with positron
Study of semiconductor with positronManoranjan Ghosh
 
Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...Sérgio Sacani
 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in UcogeCoexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucogeijrap
 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge ijrap
 
Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...
Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...
Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...Antônio Arapiraca
 
2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...
2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...
2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...Guilherme Tosi
 
Multi scale modeling of micro-coronas
Multi scale modeling of micro-coronasMulti scale modeling of micro-coronas
Multi scale modeling of micro-coronasFa-Gung Fan
 

Similar to 41 Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons - Physical Review Letters, June 2010 (20)

Laksman2014-Cysteine
Laksman2014-CysteineLaksman2014-Cysteine
Laksman2014-Cysteine
 
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
The Propagation and Power Deposition of Electron Cyclotron Waves in Non-Circu...
 
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...
My_papers_Nastishin_PRL_2012_Elasticity of Lyotropic Chromonic Liquid Crystal...
 
Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...
Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...
Stillwell_ Strongly coupled electronic, magnetic, and lattice degrees of free...
 
Magnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnetsMagnon crystallization in kagomé antiferromagnets
Magnon crystallization in kagomé antiferromagnets
 
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
45 Evidence for a narrow N* (1685) resonance in quasifree Compton scattering ...
 
48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...
48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...
48 Measurement of the Σ beam asymmetry for the ω photo-production off the pro...
 
Laser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton ScatteringLaser Pulsing in Linear Compton Scattering
Laser Pulsing in Linear Compton Scattering
 
hong1985.pdf
hong1985.pdfhong1985.pdf
hong1985.pdf
 
MOS Final Report
MOS Final ReportMOS Final Report
MOS Final Report
 
Compton effect
Compton effectCompton effect
Compton effect
 
Study of semiconductor with positron
Study of semiconductor with positronStudy of semiconductor with positron
Study of semiconductor with positron
 
Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...Interchange reconnection as the source of the fast solar wind within coronal ...
Interchange reconnection as the source of the fast solar wind within coronal ...
 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in UcogeCoexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
 
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
Coexistence of Superconductivity and Itinerant Ferromagnetism in Ucoge
 
Ik3314371440
Ik3314371440Ik3314371440
Ik3314371440
 
Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...
Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...
Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculati...
 
85908856
8590885685908856
85908856
 
2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...
2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...
2014 NJP - Oscillatory solitons and time-resolved phase locking of two polari...
 
Multi scale modeling of micro-coronas
Multi scale modeling of micro-coronasMulti scale modeling of micro-coronas
Multi scale modeling of micro-coronas
 

More from Cristian Randieri PhD

IT-ISS 3000 CONTROLLER - Accessories & Controller
IT-ISS 3000 CONTROLLER - Accessories & ControllerIT-ISS 3000 CONTROLLER - Accessories & Controller
IT-ISS 3000 CONTROLLER - Accessories & ControllerCristian Randieri PhD
 
IT-VCHD90-PRO - Videoconference & Telemedicine – Video System
IT-VCHD90-PRO - Videoconference & Telemedicine – Video SystemIT-VCHD90-PRO - Videoconference & Telemedicine – Video System
IT-VCHD90-PRO - Videoconference & Telemedicine – Video SystemCristian Randieri PhD
 
148 La comunicazione via satellite per la business continuity ed il disaster ...
148 La comunicazione via satellite per la business continuity ed il disaster ...148 La comunicazione via satellite per la business continuity ed il disaster ...
148 La comunicazione via satellite per la business continuity ed il disaster ...Cristian Randieri PhD
 
147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...
147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...
147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...Cristian Randieri PhD
 
146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...
146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...
146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...Cristian Randieri PhD
 
145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...
145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...
145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...Cristian Randieri PhD
 
144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...
144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...
144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...Cristian Randieri PhD
 
139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...
139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...
139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...Cristian Randieri PhD
 
138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...
138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...
138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...Cristian Randieri PhD
 
136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...
136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...
136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...Cristian Randieri PhD
 
133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...
133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...
133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...Cristian Randieri PhD
 
132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...
132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...
132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...Cristian Randieri PhD
 
131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...
131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...
131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...Cristian Randieri PhD
 
130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...
130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...
130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...Cristian Randieri PhD
 
129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...
129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...
129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...Cristian Randieri PhD
 
128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...
128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...
128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...Cristian Randieri PhD
 
124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...
124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...
124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...Cristian Randieri PhD
 
122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016 - Cris...
122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016  - Cris...122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016  - Cris...
122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016 - Cris...Cristian Randieri PhD
 

More from Cristian Randieri PhD (20)

IT-ISS 3000 CONTROLLER - Accessories & Controller
IT-ISS 3000 CONTROLLER - Accessories & ControllerIT-ISS 3000 CONTROLLER - Accessories & Controller
IT-ISS 3000 CONTROLLER - Accessories & Controller
 
It 2 x-2hdmi-datasheet
It 2 x-2hdmi-datasheetIt 2 x-2hdmi-datasheet
It 2 x-2hdmi-datasheet
 
IT-VCHD90-PRO - Videoconference & Telemedicine – Video System
IT-VCHD90-PRO - Videoconference & Telemedicine – Video SystemIT-VCHD90-PRO - Videoconference & Telemedicine – Video System
IT-VCHD90-PRO - Videoconference & Telemedicine – Video System
 
148 La comunicazione via satellite per la business continuity ed il disaster ...
148 La comunicazione via satellite per la business continuity ed il disaster ...148 La comunicazione via satellite per la business continuity ed il disaster ...
148 La comunicazione via satellite per la business continuity ed il disaster ...
 
147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...
147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...
147 Industria 4.0: L’automazione per l’eccellenza del settore alimentare - I ...
 
146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...
146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...
146 63° Congresso del CNI - Aggregazione e Comunicazione: Facciamo Rete con l...
 
145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...
145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...
145 Internazionalizzazione ed innovazione: le chiavi per uscire dalla crisi c...
 
144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...
144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...
144 Green Energy - Intervista a Cristian Randieri - I figli di Archimede N. 2...
 
IT-SSA5F-IR
IT-SSA5F-IRIT-SSA5F-IR
IT-SSA5F-IR
 
139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...
139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...
139 Tavola Rotonda “Edge e Cloud Computing” - Automazione Oggi N. 399 – Giugn...
 
138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...
138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...
138 Identificazione e tracciabilità nell’era dell’IoT: unconventional, smart ...
 
136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...
136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...
136 Packaging: riprende la corsa delle tecnologie Made in Italy - Automazione...
 
133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...
133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...
133 Tavola Rotonda “Marcia indietro" - Automazione Oggi N. 396 – Marzo 2017 -...
 
132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...
132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...
132 Soluzioni satellitari integrate per il controllo remoto dei sistemi TV Br...
 
131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...
131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...
131 Curarsi con la tecnologia - Il punto di vista di Intellisystem Technologi...
 
130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...
130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...
130 FN 90 Febbraio 2017 - Tavola Rotonda L'analisi tanto attesa - Fieldbus & ...
 
129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...
129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...
129 Automazione e manutenzione predittiva nell’era del cloud - Automazione Og...
 
128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...
128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...
128 Tavola Rotonda Lavorare ‘mobile’: potenzialità e criticità - Fieldbus & N...
 
124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...
124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...
124 SISTEMI DI SICUREZZA SEMPRE PIÙ “VERSO LA NUVOLA” - Safety & Security N. ...
 
122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016 - Cris...
122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016  - Cris...122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016  - Cris...
122 Ispezione di linee aeree - Automazione Oggi N. 393 – Ottobre 2016 - Cris...
 

Recently uploaded

Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsTotal Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsMarkus Roggen
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
dll general biology week 1 - Copy.docx
dll general biology   week 1 - Copy.docxdll general biology   week 1 - Copy.docx
dll general biology week 1 - Copy.docxkarenmillo
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasChayanika Das
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Christina Parmionova
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxpriyankatabhane
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and AnnovaMansi Rastogi
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2AuEnriquezLontok
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterHanHyoKim
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfGABYFIORELAMALPARTID1
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
DETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptxDETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptx201bo007
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerLuis Miguel Chong Chong
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxtuking87
 

Recently uploaded (20)

Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of CannabinoidsTotal Legal: A “Joint” Journey into the Chemistry of Cannabinoids
Total Legal: A “Joint” Journey into the Chemistry of Cannabinoids
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
dll general biology week 1 - Copy.docx
dll general biology   week 1 - Copy.docxdll general biology   week 1 - Copy.docx
dll general biology week 1 - Copy.docx
 
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika DasBACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
BACTERIAL SECRETION SYSTEM by Dr. Chayanika Das
 
PLASMODIUM. PPTX
PLASMODIUM. PPTXPLASMODIUM. PPTX
PLASMODIUM. PPTX
 
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
Charateristics of the Angara-A5 spacecraft launched from the Vostochny Cosmod...
 
Environmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptxEnvironmental acoustics- noise criteria.pptx
Environmental acoustics- noise criteria.pptx
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
linear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annovalinear Regression, multiple Regression and Annova
linear Regression, multiple Regression and Annova
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
LESSON PLAN IN SCIENCE GRADE 4 WEEK 1 DAY 2
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarter
 
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdfKDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
KDIGO-2023-CKD-Guideline-Public-Review-Draft_5-July-2023.pdf
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
DETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptxDETECTION OF MUTATION BY CLB METHOD.pptx
DETECTION OF MUTATION BY CLB METHOD.pptx
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
Advances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of CancerAdvances in AI-driven Image Recognition for Early Detection of Cancer
Advances in AI-driven Image Recognition for Early Detection of Cancer
 
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptxQ4-Mod-1c-Quiz-Projectile-333344444.pptx
Q4-Mod-1c-Quiz-Projectile-333344444.pptx
 
Introduction Classification Of Alkaloids
Introduction Classification Of AlkaloidsIntroduction Classification Of Alkaloids
Introduction Classification Of Alkaloids
 

41 Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons - Physical Review Letters, June 2010

  • 1. Limits on Light-Speed Anisotropies from Compton Scattering of High-Energy Electrons J.-P. Bocquet,1 D. Moricciani,2 V. Bellini,3 M. Beretta,4 L. Casano,2 A. D’Angelo,5 R. Di Salvo,2 A. Fantini,5 D. Franco,5 G. Gervino,6 F. Ghio,7 G. Giardina,8 B. Girolami,7 A. Giusa,3 V. G. Gurzadyan,9,10 A. Kashin,9 S. Knyazyan,9 A. Lapik,11 R. Lehnert,12,* P. Levi Sandri,4 A. Lleres,1 F. Mammoliti,3 G. Mandaglio,8 M. Manganaro,8 A. Margarian,9 S. Mehrabyan,9 R. Messi,5 V. Nedorezov,11 C. Perrin,1 C. Randieri,3 D. Rebreyend,1,† N. Rudnev,11 G. Russo,3 C. Schaerf,5 M. L. Sperduto,3 M. C. Sutera,3 A. Turinge,11 and V. Vegna5 1 LPSC, UJF Grenoble 1, CNRS/IN2P3, INPG, 53 avenue des Martyrs 38026 Grenoble, France 2 INFN Sezione di Roma TV, 00133 Roma, Italy 3 INFN Sezione di Catania and Universita` di Catania, 95100 Catania, Italy 4 INFN Laboratori Nazionali di Frascati, 00044 Frascati, Italy 5 INFN Sezione di Roma TV and Universita` di Roma ‘‘Tor Vergata,’’ 00133 Roma, Italy 6 INFN Sezione di Torino and Universita` di Torino, 10125 Torino, Italy 7 INFN Sezione di Roma I and Istituto Superiore di Sanita`, 00161 Roma, Italy 8 INFN Sezione di Catania and Universita` di Messina, 98166 Messina, Italy 9 Yerevan Physics Institute, 375036 Yerevan, Armenia 10 Yerevan State University, 375025 Yerevan, Armenia 11 Institute for Nuclear Research, 117312 Moscow, Russia 12 ICN, Universidad Nacional Auto´noma de Me´xico, A. Postal 70-543, 04510 Me´xico D.F., Mexico (Received 22 February 2010; published 17 June 2010) The possibility of anisotropies in the speed of light relative to the limiting speed of electrons is considered. The absence of sidereal variations in the energy of Compton-edge photons at the European Synchrotron Radiation Facility’s GRAAL facility constrains such anisotropies representing the first nonthreshold collision-kinematics study of Lorentz violation. When interpreted within the minimal standard-model extension, this result yields the two-sided limit of 1:6 Â 10À14 at 95% confidence level on a combination of the parity-violating photon and electron coefficients ð~oþÞYZ , ð~oþÞZX , cTX, and cTY. This new constraint provides an improvement over previous bounds by 1 order of magnitude. DOI: 10.1103/PhysRevLett.104.241601 PACS numbers: 11.30.Cp, 12.20.Fv, 29.20.Àc Properties of the speed of light c, such as isotropy and constancy irrespective of the motion of the source, play a key role in physics. For example, they are instrumental for both the conceptual foundations as well as the experimen- tal verification of special relativity, and they currently provide the basis for the definition of length in the International System of Units. It follows that improved tests of, e.g., the isotropy of light propagation remain of fundamental importance in physics. Experimental searches for anisotropies in c are further motivated by theoretical studies in the context of quantum gravity: it has recently been realized that a number of approaches to Planck-scale physics, such as strings, spacetime-foam models, noncommutative field theory, and varying scalars, can accommodate minuscule viola- tions of Lorentz symmetry [1]. At presently attainable energies, such Lorentz-breaking effects can be described by the standard-model extension, an effective field theory that incorporates both the usual standard model and gen- eral relativity as limiting cases [2]. To date, the minimal standard-model extension (MSME), which contains only relevant and marginal operators, has provided the basis for numerous tests of special relativity in a wide variety of physical systems [3,4]. In this work, we will study photons and electrons in an environment where gravity is negligible. Lorentz violation is then described by the single-flavor QED limit of the flat- spacetime MSME [2,5]. This limit contains the real, spacetime-constant MSME coefficients ðkFÞ , ðkAFÞ , b , c , d , and H , which control the extent of differ- ent types of Lorentz and CPT violation. Note, however, that c and ~k ðkFÞ are observationally indistin- guishable in a photon-electron system: suitable coordinate rescalings freely transform the ~k and c parameters into one another [5,6]. Physically, this represents the fact that the speed of light is measured relative to the speed of electrons. We exploit this freedom by selecting the specific scaling c ¼ 0 in intermediate calculations. However, we reinstate this coefficient in the final result for generality. From a phenomenological perspective, the dominant MSME coefficient is kF, which causes a direction- and polarization-dependent speed of light [6]. Various of its components have been tightly bounded with astrophysical observations [7], Michelson-Morley tests [4,8], and col- lider physics [5]. We will bound the ~0þ piece of ~k , which is an antisymmetric 3 Â 3 matrix; it currently obeys the weakest limits, so all other MSME coefficients can be set to zero in what follows. A MSME analysis then reveals PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S week ending 18 JUNE 2010 0031-9007=10=104(24)=241601(5) 241601-1 Ó 2010 The American Physical Society
  • 2. that the photon’s dispersion relation is modified: ! ¼ ð1 À ~ Á ^Þ þ Oð2 Þ: (1) Here, ¼ ð!; ^Þ denotes the photon four-momentum and ^ is a unit three-vector. The three components of ~0þ have been assembled into the form of a three-vector: ~ ðð~0þÞ23 ; ð~0þÞ31 ; ð~0þÞ12 Þ ðX; Y; ZÞ. This vector specifies a preferred direction, which violates Lorentz symmetry; it can be interpreted as generating a direction- dependent refractive index of the vacuum nð ^Þ ’ 1 þ ~ Á ^. The electron’s dispersion relation EðpÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m2 þ p2 p remains unaltered with our choice of coordinate scaling. The dispersion relation (1) shows that for a given , the photon energy ! depends on the direction ^ of the photon’s three-momentum, which exposes the ~0þ anisotropies. Reversing the direction of ^ establishes parity violation in these anisotropies. The basic experimental idea is that in a terrestrial laboratory the photon three-momentum in a Compton-scattering process changes direction due to Earth’s rotation. The photons are thus affected by the anisotropies in Eq. (1) leading to sidereal effects in the kinematics of the process. Precision measurements of Compton scattering of ultrarelativistic electrons circulating in a high-energy accelerator could help reveal such effects. In a previous paper [9], we have established the high sensitivity of a method based on the analysis of the Compton-edge (CE) energy (i.e., the minimal energy) of the scattered electrons using the GRAAL beam line [10] at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The present work utilizes dedicated GRAAL data and an improved setup to extract a competi- tive bound on ~0þ at the 10À14 level. Note that for the first time, kinematical nonthreshold physics in a particle colli- sion is exploited to test Lorentz symmetry: previous studies have employed predictions involving thresholds, such as shifts in thresholds (e.g., ! eþeÀ), the presence of novel processes above certain thresholds (e.g., photon decay), or the absence of conventional collisions above certain thresholds (e.g., neutron stability) [11]. The experimental setup at GRAAL involves counter- propagating incoming electrons and photons with three- momenta ~p ¼ p ^p and ~ ¼ À ^p, respectively. The con- ventional CE then occurs for outgoing photons that are backscattered at 180 , so that the kinematics is essentially one dimensional along the beam direction ^p. Energy con- servation for this process reads EðpÞ þ ð1 þ ~ Á ^pÞ ¼ Eðp À À 0Þ þ ð1 À ~ Á ^pÞ0; (2) where ~0 ¼ 0 ^p is the three-momentum of the CE photon, and three-momentum conservation has been implemented. At leading order, the physical solution of Eq. (2) is 0 ’ CE 1 þ 2 2 ð1 þ 4 =mÞ2 ~ Á ^p : (3) Here, CE ¼ 4 2 1þ4 =m denotes the conventional value of the CE energy. Given the actual experimental data of m ¼ 511 keV, p ¼ 6030 MeV, and ¼ 3:5 eV, yields ’ p=m ¼ 11 800 and CE ¼ 1473 MeV. The numerical value of the factor in front of ~ Á ^p is about 1:6 Â 108. It is this large amplification factor (essentially given by 2) that yields the exceptional sensitivity of the CE to ~0þ. For comparisons between tests, MSME coefficients are conventionally specified in the Sun-centered inertial frame (X, Y, Z) [4], in which ~ is constant, ^Z is parallel to Earth’s rotation axis, and terrestrial laboratories rotate with a frequency ’ 2=ð23 h 56 minÞ about ^Z. Hence, ^pðtÞ ’ ð0:9 cost; 0:9 sint; 0:4Þ, where the beam direction of GRAAL has been used, and the time t ¼ 0 has been chosen appropriately. Then, Eq. (3) becomes 0 ’ ~CE þ 0:91 2 2 CE ð1 þ 4 =mÞ2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 X þ 2 Y q sint: (4) Here, we have absorbed the time-independent Z piece into ~CE and dropped an irrelevant phase. Equation (4) clearly exposes the possibility of sidereal variations in the CE and represents our main theoretical result. Small deviations ’ from exactly counter-propagating incoming photons and electrons as well as the Lorentz- violating dispersion relation (1) itself can place the CE direction slightly off-axis. Moreover, Lorentz violation can affect laser lines as well as the spectrometer’s B field. These effects have been carefully studied and shown to be negligible, so the primary Lorentz-violating effect in the present context is given by Eq. (4). Incoming photons are generated by a high-power Ar laser located about 40 m from the intersection region. The laser beam enters the vacuum via a MgF window and is then reflected by an Al-coated Be mirror towards the 6.03 GeV electron beam. The laser and electron beams overlap over a 6.5 m long straight section. Photons are finally absorbed in a four-quadrant calorimeter, which allows the stabilization of the laser-beam barycenter to 0.1 mm. This level of stability is necessary and corresponds to a major improvement of the set-up relative to our previous result. Because of their energy loss, scattered electrons are extracted from the main beam in the magnetic dipole following the straight section. Their position can then be accurately measured in the so-called tagging sys- tem (Fig. 1) located 50 cm after the exit of the dipole. This system plays the role of a magnetic spectrometer from which we can infer the electron momentum. The tagging system is composed of a position-sensitive Si -strip detector (128 strips of 300 m pitch, 500 m thick) asso- ciated to a set of fast plastic scintillators for timing infor- mation and triggering of the data acquisition. These detectors are placed inside a movable box shielded against PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S week ending 18 JUNE 2010 241601-2
  • 3. the huge x-ray background generated in the dipole. A spring system ensures that the position-sensitive Si detec- tor always touches the box end. As will be discussed later, the x-ray induced heat load is the origin of sizable varia- tions in the box temperature, correlated with the ESRF beam intensity. This produces a continuous drift of the detector due to the dilation of the box. A typical Si -strip count spectrum near the CE is shown in Fig. 2 for the multiline UV mode of the laser used in this measurement. This setting corresponds to three groups of lines centered around 364, 351, and 333 nm, which are clearly resolved. The fitting function, also plot- ted, is based on the sum of three error functions plus background and includes six free parameters. The CE position, xCE, is taken as the location of the central line. The steep slope of the CE permits an excellent measure- ment of xCE with a resolution of $3 m for a statistics of about 106 counts. The specially designed VIRTEX-II elec- tronics [12] allowed us to collect such statistics every 30 s, as compared to a few hours in our previous measurement. During a week of data-taking in July 2008, a total of 14 765 CE spectra have been recorded. A sample of the time series of the CE positions relative to the ESRF beam covering 24 h is displayed in Fig. 3(c), along with the tagging-box temperature [Fig. 3(b)] and the ESRF beam intensity [Fig. 3(a)]. The sharp steps present in Fig. 3(a) correspond to the twice-a-day refills of the ESRF ring. The similarity of the temperature and CE spectra combined with their correlation with the ESRF beam intensity led us to interpret the continuous and slow drift of the CE positions as a result of the tagging-box dilation. To remove this trivial time dependence, we have fitted our raw data with the function xfitðtÞ ¼ x0 þ a½1 À expðÀt=1ÞŠ expðÀt=2Þ; (5) where t ¼ 0 is chosen appropriately, and 1, 2 are time constants describing heat diffusion and ESRF beam- intensity decay, respectively. These two constants could be extracted directly from the temperature data [Fig. 3(b)]. Consequently, each time series between two refills (12 h) has been fitted with only two free parameters: the position offset x0 and the amplitude a. The corrected and final spectrum, obtained by subtraction of the fitted function from the raw data, is plotted in Fig. 3(d). This correction procedure is critical since its amplitude is 3 orders of magnitude larger than the extracted limit. To test its validity, the same analysis has been applied to simulated data obtained by adding a known harmonic oscillation to the experimental data. This study has shown that the signal amplitude would indeed be attenuated by a factor ranging from 1.3 to 2.3 depending on the phase. The usual equation for the deflection of charges in a magnetic field together with momentum conservation in Compton scattering determines the relation between the CE position xCE and the photon three-momentum 0: xCE ¼ 0 p À 0 C; (6) where p is again the momentum of the ESRF beam. The constant C is determined by the trajectory of the electron; it therefore depends on the B-field magnitude and geometri- cal factors. Equation (6) can be used to derive the CE displacement resulting from a change in 0: counts(in104) 1.35 48 0 10 30 20 50 52 54 x (mm) 1.40 1.45 1.50 ω (GeV) CE FIG. 2. Si -strip count spectrum near the CE and the fitting function (see text) vs position x and photon energy !. The three edges corresponding to the lines 364, 351, and 333 nm are clearly visible. The CE position xCE is the location of the central line and is measured with a typical accuracy of 3 m. a) b) c) d) 6 12 18 t (h) 200 180 160 43 42 52.93 52.90 0.015 -0.015 I(mA)T(°C)xCE(mm)(mm) FIG. 3. Time evolution over a day of (a) ESRF beam intensity, (b) tagging-box temperature, (c) CE position and fitted curve [Eq. (5)], and (d) ¼ xCE À xfit. The error bars on position measurements are directly given by the CE fit. ESRFbeam scattered electrons xCE x x-ray shielding Si µ-strip detector scintillators FIG. 1. Schematic drawing of the tagging system. PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S week ending 18 JUNE 2010 241601-3
  • 4. ÁxCE xCE ¼ p p À CE Á0 0 : (7) To search for a modulation, the 14 765 data points have been folded modulo a sidereal day and divided in 24 bins [Fig. 4]. The error bars are purely statistical and in agree- ment with a null signal (2 ¼ 1:04 for the unbinned his- togram). Moreover, the histogram has been Fourier analyzed and provides no evidence for a harmonic oscil- lation at the sidereal frequency. Hence, an upper bound on a hypothetical oscillation can be extracted. To exclude the signal hypothesis A sinðt þ Þ at a given confidence level (C.L.), a statistical analysis has been developed. In particular, we have chosen the Bayesian approach [13], which allows us to take into account the -dependent attenuation factor due to our correction procedure in a natural way. The probability density function for the am- plitude of the signal is generated by incorporating directly the attenuation factor in the likelihood function before integration over . The resulting upper bound is A 2:5 Â 10À6 at 95% C.L. We next consider effects that could conceal an actual sidereal signal. Besides a direct oscillation of the orbit, the two quantities that may affect the result appear in Eq. (6): the dipole magnetic field via C and the momentum of the ESRF beam p. All these parameters are linked to the machine operation, and their stability follows directly from the accelerator performance. At the ESRF, the elec- tron orbit is precisely monitored to better than a m, and the beam is maintained on its so-called golden orbit by adjustment of the rf-generator frequency. Access to the accelerator database has allowed us to analyze the time series of both the dipole magnetic field and the orbit position close to our tagging system. We have verified that the fluctuations of either parameter do not exceed 10À6. The momentum stability of the ESRF beam, given by R Bdl, is then ensured to be better than 10À6. We therefore estimate that a sidereal oscillation related to one of the machine parameters cannot exceed a few parts in 107 and is negligible. We can now conclude that our upper bound on a hypo- thetical sidereal oscillation of the CE energy is Á0 =0 2:5 Â 10À6 ð95% C:L:Þ; (8) yielding the competitive limit ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 X þ 2 Y q 1:6 Â 10À14 (95% C.L.) with Eq. (4). Reinstating MSME notation and the electron coefficients for generality gives at 95% C.L. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ½2cTX À ð~0þÞYZ Š2 þ ½2cTY À ð~0þÞZX Š2 q 1:6 Â 10À14 (9) improving previous bounds by a factor of 10. The other, omitted MSME coefficients leave this limit unaffected. In summary, we have made use of the GRAAL -ray beam produced by inverse Compton scattering off the high- energy electrons circulating in the ESRF ring to test the isotropy of light propagation. This represents the first test of special relativity via a nonthreshold kinematics effect in a particle collision. Our measurement, based on the search for sidereal modulations in the CE of the scattered elec- trons, shows no evidence for a signal. Interpreting our result within the MSME, we have obtained a competitive upper bound on a combination of coefficients of the MSME’s QED sector at the 10À14 level. It is a pleasure to thank the ESRF staff for the smooth operation of the storage ring. We are especially indebted to L. Farvacque and J. M. Chaize for fruitful discussions and access to the machine database. Contributions from G. Angeloni (VIRTEX-II electronics), G. Nobili (technical support), and O. Zimmermann (laser stabilization loop) are greatly appreciated. R. Lehnert acknowledges support from CONACyT under Grant No. 55310. *ralf.lehnert@nucleares.unam.mx † rebreyend@lpsc.in2p3.fr [1] See, e.g., V. A. Kostelecky´ and S. Samuel, Phys. Rev. D 39, 683 (1989); J. Alfaro, H. A. Morales-Te´cotl, and L. F. Urrutia, Phys. Rev. Lett. 84, 2318 (2000); S. M. Carroll et al., Phys. Rev. Lett. 87, 141601 (2001); J. D. Bjorken, Phys. Rev. D 67, 043508 (2003); V. A. Kostelecky´, R. Lehnert, and M. J. Perry, Phys. Rev. D 68, 123511 (2003); F. R. Klinkhamer and C. Rupp, Phys. Rev. D 70, 045020 (2004); N. Arkani-Hamed et al., J. High Energy Phys. 07 (2005) 029. [2] D. Colladay and V. A. Kostelecky´, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998); V. A. Kostelecky´ and R. Lehnert, Phys. Rev. D 63, 065008 (2001); V. A. Kostelecky´, Phys. Rev. D 69, 105009 (2004). [3] For recent reviews see, e.g., Proceedings of the First Meeting on CPT and Lorentz Symmetry, Bloomington, IN, 1998, edited by V. A. Kostelecky´ (World Scientific, Singapore, 1999); Proceedings of the Second Meeting on CPTand Lorentz Symmetry, Bloomington, IN, 2001, edited by V. A. Kostelecky´ (World Scientific, Singapore, 2002); Proceedings of the Third Meeting on CPT and Lorentz Symmetry, Bloomington, IN, 2004, edited by V. A. Kostelecky´ (World Scientific, Singapore, 2005); Proceedings of the Fourth Meeting on CPT and Lorentz 6 12 18 t (h) +10-5 -10-5 0∆ ′ ′ FIG. 4. Full set of data folded modulo a sidereal day (24 bins). The error bars are purely statistical and agree with the dispersion of the data points (2 ¼ 1:04 for the unbinned histogram). The shaded area corresponds to the region of nonexcluded signal amplitudes. PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S week ending 18 JUNE 2010 241601-4
  • 5. Symmetry, Bloomington, IN, 2007, edited by V. A. Kostelecky´ (World Scientific, Singapore, 2008); R. Bluhm, Lect. Notes Phys. 702, 191 (2006); D. M. Mattingly, Living Rev. Relativity 8, 5 (2005) http:// relativity.livingreviews.org/Articles/lrr-2005-5/ . [4] V. A. Kostelecky´ and N. Russell, arXiv:0801.0287. [5] M. A. Hohensee et al., Phys. Rev. Lett. 102, 170402 (2009); Phys. Rev. D 80, 036010 (2009); B. D. Altschul, Phys. Rev. D 80, 091901(R) (2009). [6] V. A. Kostelecky´ and M. Mewes, Phys. Rev. Lett. 87, 251304 (2001); Phys. Rev. D 66, 056005 (2002). [7] V. A. Kostelecky´ and M. Mewes, Phys. Rev. Lett. 97, 140401 (2006). [8] S. Herrmann et al., in Ref. [3], Vol. IV; Ch. Eisele, A. Y. Nevsky, and S. Schiller, Phys. Rev. Lett. 103, 090401 (2009); M. E. Tobar et al., Phys. Rev. D 80, 125024 (2009). [9] V. G. Gurzadyan et al., Mod. Phys. Lett. A 20, 19 (2005). [10] A description of the GRAAL facility can be found in O. Bartalini et al. (GRAAL Collaboration), Eur. Phys. J. A 26, 399 (2005) and references therein. [11] R. Lehnert, Phys. Rev. D 68, 085003 (2003). [12] G. Angeloni, Universita` di Roma ‘‘Tor Vergata’’ internal report. [13] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008). PRL 104, 241601 (2010) P H Y S I C A L R E V I E W L E T T E R S week ending 18 JUNE 2010 241601-5