Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
On the Integrated Response of Catchments:
benchmark applications using chloride and isotopic tracers
Paolo Benettin
Worksh...
age T
𝒑 𝑸(𝑻, 𝒕)
Distribution of water parcels
time
𝐢 𝑑 = 𝑐 𝑇 𝒑 𝑸 𝑻, 𝒕 𝑑𝑇
∞
0 fundamental link
between water age
and water ...
NO FERTILIZATION
Measurements from the Hupsel Brook Catchment, NL
1 – slow transport
response
TTDs and transport
NL
outlet...
β€’ fast calibration
β€’ easy exploration of the
parameter space
spatially-integrated approach
simplification of the
system, n...
integrated catchment response
from McDonnell et al., 2010, HP
realistic distributionsideal distributions
𝒑 𝑸(𝑻, 𝒕)
smooth,...
πœ• [𝑆 𝑑 𝒑 𝑺 𝑇, 𝑑 ]
πœ•π‘‘
+
πœ•[𝑆 𝑑 𝒑 𝑺 𝑇, 𝑑 ]
πœ•π‘‡
= βˆ’π‘„ 𝑑 𝝎(𝑇, 𝑑) 𝒑 𝑺(𝑇, 𝑑)
Age Master Equation (after Botter et al., GRL, 2011):
...
Random sampling: 𝑝 𝑄(𝑇, 𝑑) = 𝑝 𝑆(𝑇, 𝑑)
∞
S(t)
Q(t)
Q(t)
𝐢 𝑄 𝑑 = 𝐢𝑆 𝑇
∞
0
𝑝 𝑸 𝑇, 𝑑 𝑑𝑇
𝐢 𝑄 𝑑 = 𝐢𝑆 𝑇
∞
0
𝑝 𝑺 𝑇, 𝑑 𝑑𝑇 = 𝐢𝑆 𝑑
s...
many RS compartments one non-RS compartment
𝝎 (𝑇, 𝑑)
𝝎 (𝑇, 𝑑)𝝎 (𝑇, 𝑑)
two practical approaches
8
DRAWBACKS
β€’ dry deposition
β€’ concentration is often too low (noise)
β€’ effect of plants: output conc. higher
than input con...
NL
outlet
10
chloride as a tracer
Hupsel Brook (NL)
Upper Hafren
Plynlimon (UK)
fertilization fertilization
shorter (30-100 d)
travel times
Q[mm/h]
longer (2-3 y)
travel times
11
Hupsel Brook
Benettin et al., 2013, WRR
12
Upper Hafren, Plynlimon
longer
travel times
shorter
travel times
Benettin et al., 2015, WRR
water stable isotopes
13
MAIN SOURCES
β€’ atmosphere
β€’ (deutered water for small experiments)
liquid
2H, 18O
vapor
depleted ...
14
water stable isotopes
TRACER?
β€’ mostly yes
β€’ from precipitation to discharge
β€’ if snowmelt and evaporation have
minor i...
MOBILE
WATER
MINERAL
15
dissolved Si and Na
Hubbard Brook WS3
NH, USA
hydrologic transport in a forested catchment
NS= 0.62
16
deuterium transport
travel time distributions
Silicon (Si)
Nov-2006 Nov-2007 Nov-2008
dry days:
many old particles
wet days:
many young particles
𝐢 𝑑 = πΆπ‘’π‘ž 1 βˆ’ π‘’βˆ’π‘˜π‘»
𝑝 𝑄...
14-year dataset
dissolved silicon and sodium
NS= 0.42 - 0.76
Silicon (Si) Sodium (Na)
NS= 0.34 - 0.66
1/π‘˜ ~ 10 βˆ’ 13 π‘‘π‘Žπ‘¦π‘ 
B...
19
non-RS compartment
Queloz et al., 2015a,b, WRR
Injection of fluorobenzoate
(FBA) tracers
20
ET
Q
fractional AGE olderyounger
validation
concentration[mg/l]
measurements
simulations
Q[mm/h]
mean age ~ 60-80 d
β€˜di...
21
β€’ simple hydrochemical models
generate complex age
dynamics
β€’ use of age distributions to
model geogenic solutes
β€’ mult...
acknowledgments
Plynlimon data:
Ype van der Velde
Hupsel Brook data:
Hubbard Brook data:
K.J. McGuire, S.W. Bailey, JP Gan...
Upcoming SlideShare
Loading in …5
×

Paolo Benettin

278 views

Published on

On the integrated solute response of catchments: benchmark applications using chloride and isotopic tracers

Published in: Science
  • Be the first to comment

  • Be the first to like this

Paolo Benettin

  1. 1. On the Integrated Response of Catchments: benchmark applications using chloride and isotopic tracers Paolo Benettin Workshop on coupled hydrological modling Padova | 23 – 24 April 2015
  2. 2. age T 𝒑 𝑸(𝑻, 𝒕) Distribution of water parcels time 𝐢 𝑑 = 𝑐 𝑇 𝒑 𝑸 𝑻, 𝒕 𝑑𝑇 ∞ 0 fundamental link between water age and water quality spatially-integrated approach 2
  3. 3. NO FERTILIZATION Measurements from the Hupsel Brook Catchment, NL 1 – slow transport response TTDs and transport NL outlet 2 – fast β€˜reactivity’ during storms CHLORIDE concentration measurements 3
  4. 4. β€’ fast calibration β€’ easy exploration of the parameter space spatially-integrated approach simplification of the system, no physically-based descriptions β€˜soft’ models that capture the emergent transport processes suitable for hydrologic TRANSPORT and TTDs effective integration of spatial complexity 4
  5. 5. integrated catchment response from McDonnell et al., 2010, HP realistic distributionsideal distributions 𝒑 𝑸(𝑻, 𝒕) smooth, easy to parameterize irregular, time-variant 5
  6. 6. πœ• [𝑆 𝑑 𝒑 𝑺 𝑇, 𝑑 ] πœ•π‘‘ + πœ•[𝑆 𝑑 𝒑 𝑺 𝑇, 𝑑 ] πœ•π‘‡ = βˆ’π‘„ 𝑑 𝝎(𝑇, 𝑑) 𝒑 𝑺(𝑇, 𝑑) Age Master Equation (after Botter et al., GRL, 2011): younger water 𝝎 (𝑇, 𝑑) 1 older water 𝒑 𝑺(𝑇, 𝑑) age tracking at catchment scale age distribution of the water storage StorAge Selection (SAS) functions age T RS 6
  7. 7. Random sampling: 𝑝 𝑄(𝑇, 𝑑) = 𝑝 𝑆(𝑇, 𝑑) ∞ S(t) Q(t) Q(t) 𝐢 𝑄 𝑑 = 𝐢𝑆 𝑇 ∞ 0 𝑝 𝑸 𝑇, 𝑑 𝑑𝑇 𝐢 𝑄 𝑑 = 𝐢𝑆 𝑇 ∞ 0 𝑝 𝑺 𝑇, 𝑑 𝑑𝑇 = 𝐢𝑆 𝑑 solute concentration at the catchment outlet = 𝑀𝑆 𝑑 /𝑆(𝑑) S(t) more on the RS 7
  8. 8. many RS compartments one non-RS compartment 𝝎 (𝑇, 𝑑) 𝝎 (𝑇, 𝑑)𝝎 (𝑇, 𝑑) two practical approaches 8
  9. 9. DRAWBACKS β€’ dry deposition β€’ concentration is often too low (noise) β€’ effect of plants: output conc. higher than input conc. 9 chloride as a tracer MAIN SOURCES β€’ atmosphere (coastal areas) β€’ agriculture (KCl is widely used) β€’ (road salting) TRACER? β€’ mostly yes β€’ no degradation β€’ nutrient for plants, but in very low concentrations
  10. 10. NL outlet 10 chloride as a tracer Hupsel Brook (NL) Upper Hafren Plynlimon (UK) fertilization fertilization
  11. 11. shorter (30-100 d) travel times Q[mm/h] longer (2-3 y) travel times 11 Hupsel Brook Benettin et al., 2013, WRR
  12. 12. 12 Upper Hafren, Plynlimon longer travel times shorter travel times Benettin et al., 2015, WRR
  13. 13. water stable isotopes 13 MAIN SOURCES β€’ atmosphere β€’ (deutered water for small experiments) liquid 2H, 18O vapor depleted enriched 2H, 18O heavy lighter lighter DeuteriumHubbard Brook WS3 (USA)
  14. 14. 14 water stable isotopes TRACER? β€’ mostly yes β€’ from precipitation to discharge β€’ if snowmelt and evaporation have minor impact precipitation EPFL lysimeter (CH) Hubbard Brook WS3 (USA)
  15. 15. MOBILE WATER MINERAL 15 dissolved Si and Na Hubbard Brook WS3 NH, USA hydrologic transport in a forested catchment
  16. 16. NS= 0.62 16 deuterium transport travel time distributions
  17. 17. Silicon (Si) Nov-2006 Nov-2007 Nov-2008 dry days: many old particles wet days: many young particles 𝐢 𝑑 = πΆπ‘’π‘ž 1 βˆ’ π‘’βˆ’π‘˜π‘» 𝑝 𝑄 𝑻, 𝑑 𝑑𝑻 ∞ 0 πΆπ‘’π‘ž 𝑐(𝑇) 1Β° order chemical kinetics: 17 age-dependent transport
  18. 18. 14-year dataset dissolved silicon and sodium NS= 0.42 - 0.76 Silicon (Si) Sodium (Na) NS= 0.34 - 0.66 1/π‘˜ ~ 10 βˆ’ 13 π‘‘π‘Žπ‘¦π‘  Benettin et al., in review 18
  19. 19. 19 non-RS compartment Queloz et al., 2015a,b, WRR Injection of fluorobenzoate (FBA) tracers
  20. 20. 20 ET Q fractional AGE olderyounger validation concentration[mg/l] measurements simulations Q[mm/h] mean age ~ 60-80 d β€˜direct SAS approach’
  21. 21. 21 β€’ simple hydrochemical models generate complex age dynamics β€’ use of age distributions to model geogenic solutes β€’ multi-RS system can efficiently reproduce emergent transport dynamics β€’ deeper exploration of β€˜direct SAS’ approach β€’ characterization of the age of evapotranspiration β€’ move on to complex transport dynamics (e.g. nitrates) Summary Future perspectives
  22. 22. acknowledgments Plynlimon data: Ype van der Velde Hupsel Brook data: Hubbard Brook data: K.J. McGuire, S.W. Bailey, JP Gannon, M. Green, J. Campbell, G. Likens, D. Buso ENAC/IIE/ECHO lab Pierre Queloz Lysimeter data: 22

Γ—