Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

CouchConf Israel 2013_Couchbase Tour

932 views

Published on

  • Be the first to comment

  • Be the first to like this

CouchConf Israel 2013_Couchbase Tour

  1. 1. 1
  2. 2. Announcement: local vendor at Israel via 2
  3. 3. When you tweet… #CouchConf 3
  4. 4. Stay for the Q&A Session! Beer. Wine. Snacks. Don’t miss it. 4
  5. 5. Submit questions for the Q&A session...Email: couchconfisrael@couchbase.comTweet: @couchbase...or write it down and hand it to any of theCouchbase staff! 5
  6. 6. Tell Us What You Think!DO THISGET THIS 6
  7. 7. WiFi is available... Network: exodia Password: 1234567890 7
  8. 8. 8
  9. 9. Couchbase NoSQL Leadership Leading NoSQL database company Open Source development & business model Behind Couchbase open source project Document-oriented NoSQL database Focused on interactive internet and mobile applications Provide more flexible, higher performance, more scalable database than relational alternative Most mature, reliable and widely deployed solution >5,000 paid production deployments worldwide, over 350 customers Headquarters in Silicon Valley (Mountain View, CA) ~100 employees including >60 in engineering/product >80% of commits to Couchbase, memcached, Apache CouchDB 9
  10. 10. Market Adoption – Customers Internet Companies Enterprises More than 350 customers -- 5,000 production deployments worldwide 10
  11. 11. Introduction toCouchbase Server 2.0 Sharon Barr VP of Engineering 11
  12. 12. Couchbase Server NoSQL Document Database 2.0 12
  13. 13. Couchbase Server 2.0 Easy Consistent High Scalability PE RFORM ANCE Performance Grow cluster without Consistent sub-millisecond application changes, without read and write response times downtime with a single click with consistent high throughput Always Flexible Data On JSON JSON JSO JSON JSON N Model 24x365 No downtime for software JSON document model with upgrades, hardware no fixed schema. maintenance, etc. 13
  14. 14. Flexible Data Model: Relational vs Document Data Model C1 C2 C3 C4 { JSON JSON } JSON Relational data model Document data model Highly-structured table organization Collection of complex documents with with rigidly-defined data formats and arbitrary, nested data formats and record structure. varying “record” format. 14
  15. 15. RDBMS Example: User Profile User Info Address Info KEY First Last ZIP_id ZIP_id CITY STATE ZIP 1 Frank Weigel 2 1 DEN CO 30303 2 Ali Dodson 2 2 MV CA 94040 3 Mark Azad 2 3 CHI IL 60609 4 Steve Yen 3 4 NY NY 10010 To get info about specific user, you perform a join across two tables 15
  16. 16. Document Example: User Profile { “ID”: 1, “FIRST”: “Frank”, “LAST”: “Weigel”, “ZIP”: “94040”, “CITY”: “MV”, = + “STATE”: “CA” } JSON All data in a single document 16
  17. 17. Flexible Data Model { “ID”: 1, “FIRST”: “Dipti”, “LAST”: “Borkar”, “ZIP”: “94040”, “CITY”: “MV”, “STATE”: “CA” } JSON JSON JSON JSON • No need to worry about the database when changing your application • Records can have different structures, there is no fixed schema • Allows painless data model changes for rapid application development 17
  18. 18. Couchbase Server Features Built-in clustering – All nodes equal Data replication with auto-failover Zero--downtime maintenance Clone to grow and scale horizontally Built-in managed cached Monitoring and administration APIs and GUI SDK for a variety of languages 18
  19. 19. New in 2.0 JSON support Indexing and Querying JSON JSON JSO JSON N JSON Incremental Map Reduce Cross data center replication 19
  20. 20. Additional Couchbase Server 2.0 Features Append-only storage layer Online compaction Better working set management Reduce server warm-up time 20
  21. 21. Couchbase Server 2.0 Architecture 8092 11211 11210 Couch View Memcapable 1.0 Memcapable 2.0 Moxi REST management API/Web UI vBucket state and replication manager Memcached Interface Couch API Global singleton supervisor Rebalance orchestrator Configuration manager Node health monitor Process monitor Heartbeat Couchbase EP Engine Hash table cache Write/replica Data Manager Queues Cluster Manager storage interface http on each node one per cluster Distributed CouchStore Indexing Auto compaction Erlang/OTP HTTP Erlang port mapper Distributed Erlang 8091 4369 21100 - 21199 21
  22. 22. Couchbase deployment Web Application Couchbase Client Library Data ports Data Flow Cluster Management (8091) 23
  23. 23. COUCHBASE OPERATIONS 24
  24. 24. Single node - Couchbase Write Operation 2 Doc 1 App Server 3 2 3 Managed Cache To other node Replication Doc 1 Queue Disk Queue Disk Couchbase Server Node 25
  25. 25. Update Operation 2 Doc 1’ App Server 3 2 3 Managed Cache To other node Replication 1 Doc 1’ Queue Disk Queue Disk Doc 1 Couchbase Server Node 26
  26. 26. Cache Eviction 2 Doc 6 2 3 4 5 App Server 3 2 3 Managed Cache To other node Replication Doc 1 Queue Disk Queue Disk Doc 1 Doc 6 Doc 5 Doc 4 Doc 3 Doc 2 Couchbase Server Node 27
  27. 27. Read Operation 2 Doc 1 GET App Server 3 2 3 Managed Cache To other node Replication Queue Doc 1 Disk Queue Disk Doc 1 Couchbase Server Node 28
  28. 28. Cache Miss 2 Doc 1 GET App Server 3 2 3 Managed Cache To other node Replication Queue Doc 1 Doc 5 4 4 Doc Doc Doc 3 2 Doc Disk Queue Disk Doc 1 Doc 6 Doc 5 Doc 4 Doc 3 Doc 2 Couchbase Server Node 29
  29. 29. Partitioning The Data – vbucket (internal partitions) map 30
  30. 30. Cluster wide - Basic Operation APP SERVER 1 APP SERVER 2 COUCHBASE Client Library COUCHBASE Client Library CLUSTER MAP CLUSTER MAP READ/WRITE/UPDATE SERVER 1 SERVER 2 SERVER 3 • Docs distributed evenly across ACTIVE ACTIVE ACTIVE servers Doc 5 Doc Doc 4 Doc Doc 1 Doc • Each server stores both active and replica docs Doc 2 Doc Doc 7 Doc Doc 2 Doc Only one server active at a time • Client library provides app with Doc 9 Doc Doc 8 Doc Doc 6 Doc simple interface to database REPLICA REPLICA REPLICA • Cluster map provides map to which server doc is on Doc 4 Doc Doc 6 Doc Doc 7 Doc App never needs to know Doc 1 Doc Doc 3 Doc Doc 9 Doc • App reads, writes, updates docs Doc 8 Doc Doc 2 Doc Doc 5 Doc • Multiple app servers can access same document at same time COUCHBASE SERVER CLUSTERUser Configured Replica Count = 1 31
  31. 31. Cluster wide - Add Nodes to Cluster APP SERVER 1 APP SERVER 2 COUCHBASE Client Library COUCHBASE Client Library CLUSTER MAP CLUSTER MAP READ/WRITE/UPDATE READ/WRITE/UPDATE SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 5 • Two servers added ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE One-click operation Doc 5 Doc Doc 4 Doc Doc 1 Doc • Docs automatically rebalanced across Doc 2 Doc Doc 7 Doc Doc 2 Doc cluster Even distribution of docs Minimum doc movement Doc 9 Doc Doc 8 Doc Doc 6 Doc • Cluster map updated REPLICA REPLICA REPLICA REPLICA REPLICA • App database Doc 4 Doc Doc 6 Doc Doc 7 Doc calls now distributed over larger number of Doc 1 Doc Doc 3 Doc Doc 9 Doc servers Doc 8 Doc Doc 2 Doc Doc 5 Doc COUCHBASE SERVER CLUSTERUser Configured Replica Count = 1 32
  32. 32. Cluster wide - Fail Over Node APP SERVER 1 APP SERVER 2 COUCHBASE Client Library COUCHBASE Client Library CLUSTER MAP CLUSTER MAP SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 5 • App servers accessing docs ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE • Requests to Server 3 fail Doc 5 Doc Doc 4 Doc Doc 1 Doc Doc 9 Doc Doc 6 Doc • Cluster detects server failed Promotes replicas of docs to Doc 2 Doc Doc 7 Doc Doc 2 Doc Doc 8 Doc Doc active Updates cluster map Doc 1 Doc 3 • Requests for docs now go to REPLICA REPLICA REPLICA REPLICA REPLICA appropriate server Doc 4 Doc Doc 6 Doc Doc 7 Doc Doc 5 Doc Doc 8 Doc • Typically rebalance would follow Doc 1 Doc Doc 3 Doc Doc 9 Doc Doc 2 Doc COUCHBASE SERVER CLUSTERUser Configured Replica Count = 1 33
  33. 33. DEMO TIME 34
  34. 34. Indexing and Querying – The basics • Define materialized views on JSON documents and then query across the data set • Using views you can define • Primary indexes • Simple secondary indexes (most common use case) • Complex secondary, tertiary and composite indexes • Aggregations (reduction) • Indexes are eventually indexed • Queries are eventually consistent with respect to documents • Built using Map/Reduce technology • Map and Reduce functions are written in Javascript 35
  35. 35. Eventually indexed Views – Data flow 2 Doc 1 App Server Couchbase Server Node 3 2 3 Managed Cache To other node Replication Queue Doc 1 Disk Queue Disk Doc 1 View engine 36
  36. 36. Cluster wide - Indexing and Querying APP SERVER 1 APP SERVER 2 COUCHBASE Client Library COUCHBASE Client Library CLUSTER MAP CLUSTER MAP Query SERVER 1 SERVER 2 SERVER 3 • Indexing work is distributed ACTIVE ACTIVE ACTIVE amongst nodes Doc 5 Doc Doc 5 Doc Doc 5 Doc • Large data set possible Doc 2 Doc Doc 2 Doc Doc 2 Doc • Parallelize the effort Doc 9 Doc • Each node has index for data stored Doc 9 Doc Doc 9 Doc on it REPLICA REPLICA REPLICA • Queries combine the results from Doc 4 Doc required nodes Doc 4 Doc Doc 4 Doc Doc 1 Doc Doc 1 Doc Doc 1 Doc Doc 8 Doc Doc 8 Doc Doc 8 Doc COUCHBASE SERVER CLUSTERUser Configured Replica Count = 1 37
  37. 37. Cross Data Center Replication – The basics• Replicate your Couchbase data across clusters• Clusters may be spread across geos• Configured on a per-bucket basis• Supports unidirectional and bidirectional operation• Application can read and write from both clusters (active – active replication)• Replication throughput scales out linearly• Different from intra-cluster replication 38
  38. 38. Cross data center replication – Data flow 2 Doc 1 App Server Couchbase Server Node 3 2 3 Managed Cache To other node Replication Doc 1 Queue Disk Queue Disk Doc 1 XDCR Queue To other cluster 39
  39. 39. Cluster wide - XDCR SERVER 1 SERVER 2 SERVER 3 ACTIVE ACTIVE ACTIVE COUCHBASE SERVER CLUSTER Doc Doc Doc NY DATA CENTER Doc 2 Doc Doc Doc 9 Doc DocRAM RAM RAM Doc Doc Doc Doc Doc Doc Doc Doc Doc DISK DISK DISK SERVER 1 SERVER 2 SERVER 3 ACTIVE ACTIVE ACTIVE Doc Doc Doc Doc 2 Doc Doc Doc 9 Doc Doc RAM RAM RAM COUCHBASE SERVER CLUSTER Doc Doc Doc Doc Doc Doc Doc Doc Doc SF DATA CENTER DISK DISK DISK 40
  40. 40. DEMO TIME 41
  41. 41. Demo: The next big social game 3 Objects (documents) within game: • Players • Monsters • Items Gameplay: • Players fight monsters • Monsters drop items • Players own items 42
  42. 42. Player Document { "jsonType": "player", "uuid": "35767d02-a958-4b83-8179-616816692de1", "name": "Keith4540", "hitpoints": 75, Player ID "experience": 663, "level": 4, "loggedIn": false } 43
  43. 43. Item Document { Item ID "jsonType": "item", "name": "Katana_e5890c94-11c6-65746ce6c560", "uuid": "e5890c94-11c6-4856-a7a6-65746ce6c560", "ownerId": "Dale9887" } Player ID 44
  44. 44. Monster Document { Monster ID "jsonType": "monster", "name": "Bauchan9932", "uuid": "d10dfc1b-0412-4140-b4ec-affdbf2aa5ec", "hitpoints": 370, "experienceWhenKilled": 52, "itemProbability": 0.5050581341872865 } 45
  45. 45. GAME ON! 46
  46. 46. Full Text Search Integration• Elastic Search is good for ad-hoc queries and faceted browsing• Couchbase adapter uses XDCR to push mutations to ESDocs are indexed by Elastic Search• Couchbase ES Adapter is cluster-aware ElasticSearch Unidirectional Cross Data Center Replication 47
  47. 47. Full Text Search Application Server Couchbase SDK ES Queries over HTTP Do ta TS c Da ery Qu Re Qu er fs M R y Couchbase Server Cluster ElasticSearch Server Cluster MR MR MR MR Views Views Views Views XDCR-based Cross Data Center Replication CB-ES Transport 48
  48. 48. Couchbase SDKsJava SDK User Code.Net SDK Java client API CouchbaseClient cb = new CouchbaseClient(listURIs, "aBucket", "letmein"); cb.set("hello", 0, "world"); cb.get("hello"); Couchbase Java LibraryPHP SDK (spymemcached)Ruby SDK Couchbase Server…and manymore http://www.couchbase.com/develop 49
  49. 49. QUESTIONS? 50 5
  50. 50. THANK YOU COUCHBASE SIMPLE, FAST, ELASTIC NOSQLsharon@couchbase.com@sharonyb 51

×