Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Constantin Ciobanu
CEng MRes FPWI MCIHT
Principal Track Engineer
West of England
28/02/2017
Behaviour of the track in hot ...
The physics of rail thermal expansion
ΔL = α L ΔT
- ΔL is rail extension
- α is the expansion coefficient of the rail stee...
Track parameters influencing the rail thermal behaviour
• Installation parameters
• Rail type
• Rail temperature
• Track l...
Installation parameters
• installation temperature and joint installation gap for jointed track,
• stress free temperature...
• Rail temperature range: [-14°C, 53°C] (NR/L2/TRK/3011).
Rail temperature (ΔT)
N = (α E ΔT)·A = σ A
Joint maximum gap
Gmax = Bf + Df + Dr – 2Db – 2Br
Long rail. Short rail
Track longitudinal resistance
Three levels of action:
• P1 – resistance due to the friction forces between the rail and
th...
Track longitudinal resistance – old vs new
Old track components
BR2 baseplate with Macbeth spring spike anchors
Bullhead r...
Track longitudinal resistance
Track lateral resistance
Three levels of action:
• Sleeper bottom (30-50%)
• Sleeper sides (40-60%)
• Sleeper end (10-30%)
Methods to increase the track lateral resistance
• Dynamic track stabilisation (DTS)
• Increase ballast shoulder dimension...
Joint resistance force
The fishplated rail expansion joint has two
main functions:
• to maintain the alignment of the rail...
Jointed track response to temperature variations
Jointed track response to temperature variations
… the detailed calculation process will be presented
in the PWI Journal –...
The track resistance forces retain thermal
forces in the rails and define two
envelope branches of the joint gap loop:
- 1...
• At installation the thermal forces through the length of the rail are
consistently null.
• This state will never return ...
Continuous Welded Rail (CWR)
The track composed of long rails which develops a central immobile (fixed) zone,
where no rai...
Stress transition zone – one day temperature variation
Stress transition zone
Rail temperature difference
• Tunnel (covered track) to natural sunlight track
• Significant change...
Stress transition zone
Track structure variation
• Presence of S&C
• Change in rail type
• Track over the mobile bearing o...
S&C – thermal forces
• 2 = 4 ?
• Switch rails are free to expand
• Point operating equipment allowed to switch tracks
S&C – thermal forces. 2 = 4
• Stress transfer block – closure rail transfers the stress fully to the stock rail.
CR/SR tie...
Ball and Claw - Switch/Stock rail thermal interaction devices
Adjustment Switches
Joints with overlapping rail ends, allowing longitudinal rail movement and so
dissipating thermal forc...
Adjustment Switches
Joints with overlapping rail ends, allowing longitudinal rail movement and so
dissipating thermal forc...
Adjustment Switch – rail breathing: CWR to Jointed Track (18.288m rails)
theoretical calculation
Adjustment Switch – rail breathing: CWR to Jointed Track (9.144m rails)
theoretical calculation
Adjustment Switch – rail breathing: CWR to CWR
Special design might be required, especially if one CWR section is over a l...
Track buckling
Track buckling
The track buckling has two main stages:
• Trigger phase (A-B) – track reaches unstable equilibrium
• Energy...
Track buckling (UIC 720R)
The buckling triggering energy is evaluated and a temperature limit is established,
dependant on...
CRT – Critical Rail Temperature
NR/L2/TRK/001 Module 14. Inspection and Maintenance of Permanent Way. Managing Track in Ho...
Behaviour of the track in hot weather. Rail thermal forces for jointed and CWR track
Upcoming SlideShare
Loading in …5
×

Behaviour of the track in hot weather. Rail thermal forces for jointed and CWR track

2,376 views

Published on

Permanent Way Institution - West of England Section Meeting - 28.02.2017

The speaker presented the main parameters that influence the track response to temperature variations and the means to evaluate and control the rail thermal forces. It was discussed the theoretical background and practical elements of managing the track in hot weather for jointed and CWR track, on plain line and S&C.
https://www.thepwi.org/calendar/event/view?id=677

Published in: Engineering
  • Hello! High Quality And Affordable Essays For You. Starting at $4.99 per page - Check our website! https://vk.cc/82gJD2
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Behaviour of the track in hot weather. Rail thermal forces for jointed and CWR track

  1. 1. Constantin Ciobanu CEng MRes FPWI MCIHT Principal Track Engineer West of England 28/02/2017 Behaviour of the track in hot weather Rail thermal forces for jointed and CWR track
  2. 2. The physics of rail thermal expansion ΔL = α L ΔT - ΔL is rail extension - α is the expansion coefficient of the rail steel - L is the rail length - ΔT is the rail temperature variation N = (α E ΔT)·A = σ A - E is the steel’s elasticity modulus - A is the area of the rail section - σ is the rail stress generated by the temperature variation, ΔT.
  3. 3. Track parameters influencing the rail thermal behaviour • Installation parameters • Rail type • Rail temperature • Track longitudinal resistance • Track lateral resistance • Joint minimum and maximum gap - for jointed track • Joint resistance - for jointed track • Adjustment switch gap – for CWR
  4. 4. Installation parameters • installation temperature and joint installation gap for jointed track, • stress free temperature (SFT) for CWR track. Rail type N = (α E ΔT)·A = σ A
  5. 5. • Rail temperature range: [-14°C, 53°C] (NR/L2/TRK/3011). Rail temperature (ΔT) N = (α E ΔT)·A = σ A
  6. 6. Joint maximum gap Gmax = Bf + Df + Dr – 2Db – 2Br
  7. 7. Long rail. Short rail
  8. 8. Track longitudinal resistance Three levels of action: • P1 – resistance due to the friction forces between the rail and the fastening. This is usually the first to activate, at very short movements of the rail. In this case the rail can move through the fastenings and the sleepers are stationary. • P2 – resistance due to frictional forces between the fastening system and the sleeper. The majority of rail fastenings don’t allow any relative movement at this level and in this common case P2 is ignored and the longitudinal resistance is only analysed for movements at the other two levels. • P3 – resistance due to frictional and passive resistance forces between the sleeper and the ballast. In this case the rails and sleepers move together relative to the ballast. This resistance is typically in the range of 6 (tamped) to 10 (consolidated) kN/sleeper.
  9. 9. Track longitudinal resistance – old vs new Old track components BR2 baseplate with Macbeth spring spike anchors Bullhead rail Panlock chair fastening P1 ≈ 0 P1 > P3 Pandrol Fastclip Pandrol ZLR – Zero Longitudinal Resistance P1 = 0 Modern track components
  10. 10. Track longitudinal resistance
  11. 11. Track lateral resistance Three levels of action: • Sleeper bottom (30-50%) • Sleeper sides (40-60%) • Sleeper end (10-30%)
  12. 12. Methods to increase the track lateral resistance • Dynamic track stabilisation (DTS) • Increase ballast shoulder dimensions • Lateral resistance plates • Glue ballast • Heavier/special sleepers
  13. 13. Joint resistance force The fishplated rail expansion joint has two main functions: • to maintain the alignment of the rail running surface. • to reduce the rail thermal forces by allowing rail expansion or contraction. R = 4 n N f
  14. 14. Jointed track response to temperature variations
  15. 15. Jointed track response to temperature variations … the detailed calculation process will be presented in the PWI Journal – Vol 135 Part 2 – April 2017
  16. 16. The track resistance forces retain thermal forces in the rails and define two envelope branches of the joint gap loop: - 12-13 - compression force - 7-8 - tension force Significant difference compared to the free thermal expansion model. Delayed response of the track to rail temperature variations: A one day temperature loop is contained in the envelope loop. Morning : 15°C, joint gap of 9 mm. The temperature increases during the day to a maximum of 35°C ,joint gap is reduced to 4 mm. During the night the temperature decreases to 10°C , gap increases to 6.3 mm. The next morning the temperature reaches 15°C, the gap remains 6.3 mm because the resistance forces have not been reversed during the 5°C increase from the minimum 10°C reached during the night.
  17. 17. • At installation the thermal forces through the length of the rail are consistently null. • This state will never return naturally throughout the service life of the track. The thermal forces will never be consistently equal through the entire length of the rail, unless joint gap resetting or any similar maintenance works are undertaken. • From thermal perspective the track behaves as a hysteretic model where the current state of the internal thermal forces is dependent on the rail temperature history.
  18. 18. Continuous Welded Rail (CWR) The track composed of long rails which develops a central immobile (fixed) zone, where no rail movement due to temperature variation occur. (UIC definition) Lb – Stress transition length (Breathing length) ≈90 -120 m. CWR L > 200m. Shorter lengths of track can be considered CWR from maintenance perspective. L > 37 m NR/L2/TRK/3011 (2012) and L > 30 m NR/L2/TRK/2102 (2016)
  19. 19. Stress transition zone – one day temperature variation
  20. 20. Stress transition zone Rail temperature difference • Tunnel (covered track) to natural sunlight track • Significant changes in sunlight exposure – passage from cutting to embankment, changes in the direction of the track • Passage over a river – condensing water will reduce the rail temperature compared to the track over embankment • Closure weld / stressing procedure (heat influence zone, different SFT)
  21. 21. Stress transition zone Track structure variation • Presence of S&C • Change in rail type • Track over the mobile bearing of a bridge
  22. 22. S&C – thermal forces • 2 = 4 ? • Switch rails are free to expand • Point operating equipment allowed to switch tracks
  23. 23. S&C – thermal forces. 2 = 4 • Stress transfer block – closure rail transfers the stress fully to the stock rail. CR/SR tied together • Switch/Stock rail thermal interaction devices (ball & claw or similar). CRs have limited independent expansion. Creep monitor. It is not a monitoring device but a partial stress transfer device. • POE designed to fully allow the switch rail expansion . CRs expand freely relative to SRs
  24. 24. Ball and Claw - Switch/Stock rail thermal interaction devices
  25. 25. Adjustment Switches Joints with overlapping rail ends, allowing longitudinal rail movement and so dissipating thermal forces when CWR abuts jointed track or other features not designed to withstand thermal forces. • CWR to jointed track • CWR to CWR (when the track structure changes) • Over the mobile bearing of long bridges UIC 774 R. Track Bridge Interaction
  26. 26. Adjustment Switches Joints with overlapping rail ends, allowing longitudinal rail movement and so dissipating thermal forces when CWR abuts jointed track or other features not designed to withstand thermal forces.
  27. 27. Adjustment Switch – rail breathing: CWR to Jointed Track (18.288m rails) theoretical calculation
  28. 28. Adjustment Switch – rail breathing: CWR to Jointed Track (9.144m rails) theoretical calculation
  29. 29. Adjustment Switch – rail breathing: CWR to CWR Special design might be required, especially if one CWR section is over a long bridge. (UIC 774 R. Track Bridge Interaction) theoretical calculation
  30. 30. Track buckling
  31. 31. Track buckling The track buckling has two main stages: • Trigger phase (A-B) – track reaches unstable equilibrium • Energy release phase (B-C) – track releases tension and assume a new stable equilibrium state
  32. 32. Track buckling (UIC 720R) The buckling triggering energy is evaluated and a temperature limit is established, dependant on required factor of safety. Definition of the Critical Rail Temperature (CRT) – a safe rail temperature increase.
  33. 33. CRT – Critical Rail Temperature NR/L2/TRK/001 Module 14. Inspection and Maintenance of Permanent Way. Managing Track in Hot Weather. The rules for evaluating the CRT are based on buckling calculations.

×