-
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Making true “molecule”-“mechanism”-“observation” relationship connections is a time consuming, iterative and laborious process. In addition, it is very easy to miss critical information that affects key decisions or helps make plausible scientific connections.
The current practice for deciphering such relationships frequently involves subject matter experts (SMEs) requesting resource from resource-constrained data science departments to refine and redo highly similar ad hoc searches. The result of this is impairment of both the pace and quality of scientific reviews.
In this presentation, I show how semantic integration can be made to ultimately become part of an integrated learning framework for more informed scientific decision making. I will take the audience through our pilot journey and highlight practical learnings that should inform subsequent endeavours.
Be the first to like this
Login to see the comments