Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
When you are running systems in production, clearly you want to make sure they are up and running at all times. But in a distributed system such as Apache Kafka… what does “up and running” even mean?
Experienced Apache Kafka users know what is important to monitor, which alerts are critical and how to respond to them. They don’t just collect metrics - they go the extra mile and use additional tools to validate availability and performance on both the Kafka cluster and their entire data pipelines.
In this presentation we’ll discuss best practices of monitoring Apache Kafka. We’ll look at which metrics are critical to alert on, which are useful in troubleshooting and what may actually be misleading. We’ll review a few “worst practices” - common mistakes that you should avoid. We’ll then look at what metrics don’t tell you - and how to cover those essential gaps.
Login to see the comments