2011 ATE Conference Panel Session


Published on

Panel: Engaging Students in STEM: How to Save a Perspiring Penquin

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

2011 ATE Conference Panel Session

  1. 1. Engaging Students in STEM: How to Save a Perspiring Penguin Melissa Higgins Jessie Klein Christine Cunningham Gina Foley Museum of Science, Boston
  2. 2. Bridging Engineering, S iB id i E i i Science, and Technology for Elementary Educators (BEST)
  3. 3. Why BEST?• In MA there are engineering and technology standards for grades K-12, and we want our future educators to be prepared.• There is a need for engineering and g g technological literacy for all citizens.• Community and four-year college faculty, y y g y as part of the K-16 education spectrum, play a crucial role in systematic change.
  4. 4. Some History: How did we get to the BEST grant? Engineering is Elementary g g y ATLAS BEST
  5. 5. EiE UnitsUnit Title Science Topic Engineering Storybook/Setting FieldCatching the Wind: Designing Windmills Wind & Weather Mechanical Leif Catches the Wind/DenmarkWater, Water Everywhere: Designing Water Water Environmental Saving Salila’s Turtle/IndiaFiltersA Sticky Situation: Designing Walls Earth Materials Materials Yi Min’s Great Wall/ChinaTo Get to the Other Side: Designing Bridges Balance and Forces Civil Javier Builds a Bridge/USA Latino Bridge/USA-LatinoMarvelous Machines: Making Work Easier Simple Machines Industrial Aisha Makes Work Easier/USA-African AmericanSounds Like Fun: Seeing Animal Sounds Sound Acoustical Kwame’s Sound/GhanaThe Best of Bugs: Designing Hand Pollinators Insects/Plants Agricultural Mariana Becomes a Butterfly/Dominican RepublicJust Passing Through: Designing Model Organisms Bioengineering Juan Daniel’s Futbol Frog/El SalvadorMembranesAn Alarming Idea: Designing Alarm Circuits Electricity Electrical A Reminder for Emily/AustraliaA Work in Process: Improving a Play Dough Solids & Liquids Chemical Michelle’s MVP Award/CanadaProcessA Stick in the Mud: Evaluating a Landscape Landforms Geotechnical Suman Crosses the Karnali River/NepalThinking Inside the Box: Designing Plant Plants Package A Gift From Fadil/JordanPackagesThe Attraction is Obvious: Designing Maglev Magnetism Transportation Hikaru’s Toy Troubles/JapanSystemsNow You’re Cooking: Designing Solar Ovens Energy Green Lerato Cooks Up a Plan/BotswanaA Long Way Down: Designing Parachutes Astronomy Aerospace Paulo’s Parachute Mission/BrazilSolid as a Rock: Replicating an Artifact Rocks & Minerals Materials Galya and Natasha’s Rocky Adventure/RussiaA Slick Solution: Cleaning an Oil Spill Ecosystems Environmental Tehya’s Pollution Solution/USA-Native AmericanTaking the Plunge: Designing Submersibles Sinking & Floating Ocean Despina Makes a Splash/GreeceLighten Up: Designing Lighting Systems Light Optical Omar’s Bright Idea/EgyptNo Bones About It: Designing Knee Braces Human Body Biomedical Erik’s Unexpected Twist/Germany
  6. 6. ATLAS Goals and Outcomes• Enrich community college elementary education courses with technology and engineering. engineering• Strengthen elementary educators’ knowledge of and capabilities to teach technology, engineering, and science.• Create a cadre of community college and four-year faculty leaders that disseminate capabilities and curricular models to colleagues in the region and state.• Increase awareness among stakeholders about the importance of effective technology and engineering elementary education programs.
  7. 7. Partners Northern Essex Fitchburg State Community College Museum of Science Holyoke Community Westfield College State Bridgewater State 21 Faculty from community colleges 8 Faculty from four year colleges four-year Bristol Community 21 School District Partners College Industry Partners: Verizon and Boston Society of Civil Engineers
  8. 8. What we found through ATLAS• Each college has different courses, systems, and structures that require a myriad of integration models.• Student gains are greatest in science courses— likely because of the natural links between science and engineering.• While gains are strongest in science classes, having h i connections made i other courses i d in h (particularly education courses) are invaluable.
  9. 9. Goals of the BEST grant• Enrich college science and education courses taken by preservice elementary and early education students with technology and engineering.• Strengthen educators knowledge of and educators capabilities to teach engineering, technology and science in active and engaging ways.
  10. 10. Grant Partners• Berkshire Community College• Massassoit Community College• Middlesex Community College• North Shore Community College• Bridgewater St t University B id t State U i it• Fitchburg State University• Massachusetts College of Liberal Arts• Salem State University
  11. 11. Process to Date• Summer kick-off workshop kick off – 2010: Life sciences – 2011: Physical• Develop models for course integration• Academic year implementation
  12. 12. Evaluation Results to Date• Students in BEST courses are asked to complete pre- and post assessments post-assessments.• Analysis of these assessments showed that after completing engineering and technology activities in their p g g g gy courses, students’ judgments were significantly more similar to those of engineering experts, and their confidence surrounding these topics had increased increased.• Significantly, these results were found with students of all majors, not just those who intend to become teachers. Thus, results indicate that the BEST program is raising the levels of STEM literacy of all participating students.
  13. 13. Contact Information for BEST project staff• Christine Cunningham: ccunningham@mos org ccunningham@mos.org• Melissa Higgins: mhiggins@mos.org• Martha Hass: marthahass@gmail com marthahass@gmail.com
  14. 14. Jessie KleinMiddlesex Community College kleinj@middlesex.mass.edu
  15. 15. SCI 122 Integrated Science II Fall 2010 Survey Biological Principles Survey Biological Principles  Elementary Education majors  Early Childhood majors Early Childhood majors  Para Professionals
  16. 16. Best of Bugs: Designing Hand Best of Bugs: Designing Hand  Pollinators Unit on Flower Structure and Pollination  Fast Plant‐life cycle Fast Plant‐life cycle Pre‐Test and Post‐Test Engineering Design Process Engineering Design Process  Technology in a Bag  Card Tower Module Scenario‐Agricultural Engineering  Plant from Hawaii brought to the Dominican Republic lacks  a pollinator
  17. 17. Best of Bugs: Designing Hand Best of Bugs: Designing Hand  Pollinators Scenario  Why Don’t I have Apples?  Agricultural Engineering  Bee Colony Collapse Disorder‐Readings and  Assignment  Apple Segment of Botany of Desire DVD  EIE Activity
  18. 18. Pre and Post Results
  19. 19. Pre and Post Results
  20. 20. AVERAGE on PRE and POST
  21. 21. A Slick Solution: Cleaning an Oil A Slick Solution: Cleaning an Oil  Spill p BIO 140 Botany Unit on Ecology Unit on Ecology Pre‐Test and Post‐TestE i Engineering Design Process i D i P  Technology in a Bag  Card Tower
  22. 22. A Slick Solution Module Scenario‐Environmental Engineering Contain and clean a spill on an reservation in  Washington State. Class Scenario‐Oil spill on interstate near the campus  pond Test containment and clean‐up materials Develop plan Clean‐up spill staying within a budget
  23. 23. A Slick Solution: Cleaning an Oil A Slick Solution: Cleaning an Oil  Spill Assignment‐readings on wetlands  Describe their clean‐up procedure  Develop a wetland food web  Describe plant adaptation for life in wetlands  Discuss impact of oil spill, climate change, and  invasive species on wetlands  Discuss why wetlands are important
  24. 24. What is Engineering?
  25. 25. What is the problem?You need to solve this problem. What doyou want to know before you start?
  26. 26. Your Challenge: Design a model enclosure that keeps our model penguins from melting in the hot Arizona sun.• You have an unlimited amount of tape and 5 f pieces of material to construct your enclosure. You have scissors to use as a tool tool.• You may only use ONE of each type of material.• Visitors must have a 360 view of the penguin in the enclosure.• Test your design by placing your model penguin in your enclosure and then placing them both in the “oven” for 5 minutes. The less your penguin “perspires” the better perspires better.• You have 15 minutes to complete your challenge.
  27. 27. Time MassStartEnd d Total change in mass % change i h in mass
  28. 28. Using verbs, describe what you did during h design d i the d i process.
  29. 29. The Engineering Design Process g g g Brainstorming Criteria No evaluation Constraints IMAGINE Sci. info ASK THE GOAL To solve a problem by PLAN developing or improving a technology Get specific IMPROVE with one CREATE idea And test
  30. 30. BEST at BCC BEST at BCC Gina Foley Life Science FacultyBiotechnology Program Advisor Berkshire Community College e s e Co u ty Co ege
  31. 31. BEST at BCC BEST at BCC• Taught in General Biology I Taught in General Biology I• 5 education students per 30• C bi d Combined Lecture and Lab d b
  32. 32. Initial Meeting Initial Meeting• Engineering Design Pre‐Assessment Engineering Design Pre Assessment • Discuss pre‐programmed understanding of  Scientific Method and Engineering Scientific Method and Engineering• Marshmallow Challenge
  33. 33. The Challenge gRaise your team marshmallow higher than any other team using the materials given.materials givenThe MaterialsThe Materials•20 sticks of spaghetti•1 yard of tape•1 yard of string•1 marshmallow IN 18 MINUTES!
  34. 34. Common Team Misjudgments•Lack of communication•Lack of communication•Lack of planning•Too much planning•Forget the importance of the iterative process!
  35. 35. Successful Teams•Communicate•Plan•Remember that it is all about the marshmallow!
  36. 36. Learning outcome:Learning outcome:•Students get a practical understanding of the engineering design process.
  37. 37. 2nd Lab Meeting Lab MeetingStudents work in teams to design a membrane to save their frog from desiccation.  • Lab performed during biological membranes chapter.• They must consider the importance  y pof the structure and function of membranes.• Students plan approach, test materials, re‐plan and build the materials re plan and build themodel membrane that will keep frog alive.• 24 hours later we check on frog. 
  38. 38. 2nd Lab Meeting Challenge:  Keep your  frog Challenge: Keep your “frog”  alive for 24 hours. Materials: •Sponge, filter paper, felt, screen,  cheesecloth  hb h •Amphibian house •Plastic frog
  39. 39. Has the frog survived??
  40. 40. Benefit to ALL studentsBenefit to ALL students • Using the EiE lessons Using the EiE lessons  brings a real‐life  connection to sometimes  connection to sometimes abstract concepts. • Students consider careers Students consider careers  in education because of  the experience. the experience
  41. 41. Future Activities Future Activities• Explore traits of organisms that have Explore traits of organisms that have  beneficial applications to humans• Identify organism and gene of interest Identify organism and gene of interest• Identify restriction enzyme needed to splice  gene.• Bioengineer a new transgenic organism• Consider the ethical implications of such an  organism g