Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Intermittent coating

5,151 views

Published on

Learn more about intermittent coating, a method of slot die coating. This type of coating is particularly useful in pharmaceutical/medical and energy storage products industries.

Published in: Technology
  • Be the first to comment

Intermittent coating

  1. 1. INTERMITTENT  COATING  
  2. 2. BACKGROUND   •  We.ng   –  Surface  energy  modifica=on   •  Pump  Control   –  Valve  control  (=ming)   –  Physical  movement  (=ming)   •  Physical  Posi=on   –  Liquid  (vapor)  adsorp=on   •  Distance   •  Roughness   •  Concentra=on  
  3. 3. INTRODUCTION   •  Con=nuous   •  Discrete  Panel   •  Process  limita=ons   – Head   – Tail   – Line  speed   – Start/stop  phenomenon  
  4. 4. PATENTS   •  US  4,938,994     – Edward  Choinski  (1990)   •  Flow  control   •  Mechanical  movement  
  5. 5. PATENTS   •  US  5,360,629       – Thomas  Milbourn  and  Jerry  Barth  (1994)   •  Con=nuous  web   •  3-­‐way  valve   –  Time  limita=on   •  Mul=ple  sta=ons  
  6. 6. PATENTS   •  US  5,824,156         – Watanabe  et  al  (1998)   •  Con=nuous  web   •  Internal  shut-­‐off  bar  
  7. 7. SPECIFICATIONS   •  Coat  width  =  340  mm   •  Coat  length  =  680  mm   •  Intermibent  coa=ng  capability  required  up  to  10  mpm  (30   mpm  in  further  study)  with  maximum  3  mm  tail  allowed   •  Crossweb  varia=on  tolerance  based  off  weight  (5  +/-­‐0.15   mg/cm2).   •  Required  coa=ng  speed:  at  least  10  mpm  for  a  slurry  with   loading  of  6  mg/cm2  and  50  solid  %   •  Coa=ng  edge  quality  to  match  crossweb  coa=ng  varia=on   capability   •  Tension  control  improvement  to  match  downweb  coa=ng   varia=on  capability  based  off  weight  (5  +/-­‐0.15  mg/cm2)  
  8. 8. SPECIFICATIONS   •  Head  &  Tail  development   –  Crossweb  caliper  control   –  Velocity  gradient   –  Pressure  gradient   –  Volumetric  flow   •  Edge  effects   –  Surface  tension   –  Film  stretching   –  Die  swell   •  Patch  control   –  Computer  control  and  programming  (die  posi=oner,  valve  and   web  control)   –  Electrical  response  (valve  and  physical  movement)  
  9. 9. EXPERIMENTAL   •  Anode   – Water-­‐based  (shear  thinning)   – Copper  substrate   •  Cathode   – NMP-­‐based  (shear  thinning)   – Aluminum  substrate  
  10. 10. EXPERIMENTAL   •  Slot  die  setup   – Offset  =  0   – Lip  face  (upstream  and  downstream)  =  762  micron   (0.030  inch)   – Shim  thickness  =  500  micron  (20  mil)   – Coa=ng  gap  =  25  micron  (1  mil)   – Coa=ng  width  =  340  mm  (13.38  inch)  
  11. 11. RESULTS   •  Simula=on  feedback   –  Pressure   –  Velocity   –  Volumetric  flow   –  Mass  flow   •  Tension  and  compression   –  Flow  stability   –  Stagna=on  zones   –  Die  swell  
  12. 12. RESULTS   •  Line  speed  increase   –  Parallellism  worsens   •  We.ng   •  Reac=on  =me   •  Pressure  increase   –  Fluid  velocity  increase   –  Measure  and  balance  around  valve   •  Edge  effects   –  Stresses  (surface  tension,  film  stretching  or  die  swell)   –  Draw  ra=o  (substrate  speed/fluid  speed)   –  Slot  die  design  and  simula=on   •  Air   –  Excessive  fluid  flow  
  13. 13. CONCLUSION   •  10  mpm  acceptable  applica=on  speed   •  Best  setup  (reduced  head/tail,  reduced  edge  bead  and   improved  parallel  edge)   –  Flow  control   –  Mechanical  movement   •  FUTURE   –  Increased  line  speed  (30  mpm  +)   –  Alterna=ve  technologies   –  Mul=ple  sta=ons   –  Surface  modifica=on  effect   –  Vacuum  effect  

×