Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Energy In World Wave Energy 12 February 2010


Published on

  • thank you!very good!
    Are you sure you want to  Yes  No
    Your message goes here

Energy In World Wave Energy 12 February 2010

  1. 1. WAVE ENERGY EXPLOITATION   M. Teresa Pontes LNEG 1 2 February 2010 ENERGY IN THE WORLD
  2. 2. <ul><li>WAVE ENERGY CONVERSION (I) </li></ul><ul><li>1974 – 1990s </li></ul><ul><li>R&D started in 1974 after first oil crisis </li></ul><ul><li>Several wave energy converters were investigated </li></ul><ul><li>L eadership by R&D institutions, government funding </li></ul><ul><li>UK, Japan, Norway, Sweden, USA, Denmark, Ireland, Portugal </li></ul><ul><li>Portugal – Lisbon Technical University (1977) and INETI (1983) </li></ul><ul><li>Nine shoreline prototypes ( 8 OWCs – 20 to 500 kW) + TAPCHAN </li></ul><ul><li>Norway, Japan, India, China, UK, Portugal, Australia (1985-2000) </li></ul>
  3. 3. <ul><li>WAVE ENERGY CONVERSION (II) </li></ul><ul><li>Mid 1990s – Present </li></ul><ul><li>Leadership by SMEs, large companies start involvement </li></ul><ul><li>Offshore devices – 1:4 and 1:1 prototypes testing </li></ul><ul><li>Governments adopt market-driven policies </li></ul><ul><li>Test zones (EMEC & Wave Hub, UK; Galway Bay, Ireland; Pilot Zone, Portugal; </li></ul><ul><ul><ul><ul><li>Runde Centre- Norway; BIMEP – Catalonia, Spain; France) </li></ul></ul></ul></ul>
  4. 4. Global resource is very large : 1-10 TW (World average consumption of electrical energy : 2 TW) <ul><li>T otal usable resource comparable to the one of wind in coastal regions </li></ul><ul><li>( Portugal 2-4 GW versus 6-7 GW for onshore wind ) </li></ul><ul><li>Resource more abundant in moderate to high latitudes (North and South) </li></ul>From: Barstow, Mollison & Cruz.
  5. 5. Wave Energy can exhibit large seasonal variation In northerrn hemisphere resource is generally much,lower in summer than in winter In southern hemisfere summer –winter variations are much lower important advantage (Australia,NZ, South Africa, Chile, Argentina, Brasil)
  6. 6. SOUTH NORTH Average monthly mean lower in relation to annual average
  7. 7. <ul><li>PORTUGAL CONDITIONS </li></ul><ul><li>Medium / high resource (30 kW/m, deep water); moderate extremes </li></ul><ul><li>Long west coast facing open ocean with majority population </li></ul><ul><li>Electrical grid, harbours, shipyards </li></ul>
  9. 9. RESOURCE ASSESSMENT (I) WERATLAS – Offshore European Wave Energy Atlas (1996) <ul><li>EC CONTRACT </li></ul><ul><li>INETI coordinator </li></ul><ul><li>6 countries </li></ul><ul><li>Electronic Atlas </li></ul><ul><li>Wave Climate & </li></ul><ul><li>Resource statistics </li></ul><ul><li>Atlantic and Mediterranean coasts </li></ul> European Wave Energy Atlas (INETI)
  10. 11. PORTUGAL - RESOURCE ASSESSMENT (II) <ul><li>ONDATLAS </li></ul><ul><li>Nearshore Resource Atlas </li></ul><ul><li>Mainland (2003) </li></ul><ul><li>Detailed statistics at 85 points </li></ul><ul><li>76 nearshore (30-50 km) </li></ul><ul><li>5 offshore </li></ul><ul><li>2 open ocean </li></ul><ul><li>Madeira Archipelago ( </li></ul>
  11. 12. SITE SELECTION <ul><li>PEMAP - Potential of Marine Energies in Portugal </li></ul><ul><li>Evaluation of theoretical, technical and accessible resources </li></ul><ul><li>Coastal info – bathymetry, geology, faults, …. </li></ul><ul><li>Infrastructures – electrical grid, harbours, shipyards, breakwaters, … </li></ul><ul><li>Protected areas </li></ul><ul><li>Resource </li></ul><ul><li>Conflicts – submarine cables, defense, navigation, fishing, ….. </li></ul><ul><li>Administrative Division – districts, council, freguesias </li></ul>
  12. 13. PEMAP - GIS Database Sand Coverage
  13. 14. WAVE ENERGY TECHNOLOGIES Corpos oscilantes (com motor hidráulico, Turbina hidráulica, gera-dor eléctrico linear) Estrutura flutuante: Mighty Whale, OE-Buoy, Oceanlinx Coluna de água oscilante (com turbina de ar) Galgamento (com turbina hidráulica de baixa queda) Estrutura flutuante (com concentração): Wave Dragon Flutuante Submerso Essencialmente translação vertical: AquaBuoy, FO3, Wavebob, Power Buoy, Wave Star Essencialmente rotação: Pelamis, SEAREV Essencialmente translação vertical: AWS Rotação: WaveRoller, Oyster Estrutura fixa Isolado: Pico, LIMPET Em quebra-mar: Sakata, Foz do Douro Estrutura fixa Na costa (com concentração): TAPCHAN Em quebramar (sem concentração): SSG Pico Limpet Sakata Foz do Douro OE-Buoy Mighty Whale Energetech AquaBuoy FO3 Wavebob Power Buoy Wave Star Pelamis SEAREV Wave Roller Oyster AWS TAPCHAN SSG Wave Dragon
  14. 15. Present Situation 1 <ul><li>Co-existence of various basic concepts : </li></ul><ul><li>Oscilanting Water Column (OWC) </li></ul><ul><li>Small oscillating systems (“point absorbers”) </li></ul><ul><li>Large oscillating systems (multi-bodies) </li></ul><ul><li>Run-up systems, ... </li></ul>Many projects (>50), of which a small number ( ≈ 15 ?) attained or is closed to protoitype . Opposite to wind energy, no dominating technology Slow convergence to a small number of basic concepts ? There area several modes of efficiently extracting wave energy.
  15. 16. As in life, the systems that will survive will be the most prone in a Darwinian fight for market survivability . How long this will take? Who will be the winners? ? Tempo geológico Floating bodies (with hidraulic motor, Hidraulic turbinehidráulica, linera electrical generator) Floating Submerged Essencialmente translação vertical: AquaBuoy, FO3, Wavebob, Power Buoy, Wave Star Essencialmente rotação: Pelamis, SEAREV Essentially vertical translation: AWS Rotação: WaveRoller, Oyster Floating structure : Mighty Whale, BBDB, Energetech/Oceanlinx Oscillating Water Column (air turbine) Fixed Structure Isolado: Pico, LIMPET Em quebra-mar: Sakata, Mutriku Run-up (with low head hidraulic turbine) Fixed Structure At coast (with concentração): TAPCHAN In breakwater (no concentration): SSG Floating structure (with concentration): Wave Dragon
  16. 17. <ul><li>Water Reservoir in run-up systems : </li></ul><ul><li>Tapchan, Wave Dragon, SSG. </li></ul>Solar energy (24h period) and t ides (12h25m) intermitent sources. How to store energy? Wave energy is also intermitent, with much lower period (5-15 s). It is necessary to make regular the electrical produced power (electrical grid, electrical equipaments). <ul><li>Kinetic energy in a inertia wheel : </li></ul><ul><li>Rotor of air turbines in the OWC sistems. </li></ul><ul><li>Gas Acumulator </li></ul><ul><li>Oscillating bodies with hydraulic circuit. </li></ul>
  17. 18. Energy Conversion Systems (product: electrical energy) <ul><li>Linear Electrical Generator (AWS, vertical oscilating buoys) </li></ul><ul><li>Direct Conversion </li></ul><ul><li>Good golab Efiiciency. </li></ul><ul><li>Prototype Phase . Not avilabale in market? </li></ul><ul><li>High Cost? </li></ul><ul><li>Energy storage ≈ 0 : necessary high relation maximum/mean power </li></ul><ul><li>Low head hidraulic turbines (Wave Dragon, run-up systems) </li></ul><ul><li>Conventional Equipament. </li></ul><ul><li>High efficiency. </li></ul><ul><li>Energy storage in the water reservoir </li></ul><ul><li>.. </li></ul>
  18. 19. <ul><li>Air Turbines ( OWC). </li></ul><ul><li>Several types (Wells, impulse, …). </li></ul><ul><li>Advanced prototype phase . </li></ul><ul><li>Available technology. </li></ul><ul><li>Efficiency (50-60%?) to be increased </li></ul><ul><li>Kinetic Energy storage in rotor (+ in Wells turbine). </li></ul><ul><li>Hidraulico motor in high pressure oil circuit ( floating bodies) </li></ul><ul><li>Conventional use of conventional equipment . </li></ul><ul><li>High efficiency (lower at partial load) </li></ul><ul><li>Gas Acumulators (expensive…) for energy storage. </li></ul><ul><li>High head hidraulicas turbines (Oyster, AquaBuoy). </li></ul><ul><li>Alternative to high pressure oil. </li></ul><ul><li>Conventional equipment, high efficiency. </li></ul><ul><li>Closed or open circuit (sea water). </li></ul>
  19. 20. Present situation 2 Technology is more difficult than that of wind energy. In technical and economic aspects, situation is similar to wind energy technology in the 1980s (?) Except in some Oscillating Water Columns (Pico 1999, Islay 2000), experience on maintenance, reliability and survivability is small or null, beyond few months. Information is scarce (and nor much reliable?) on costs and economic aspects. Often, what is publicised by teams is based on cenarios and projections assuming cost reduction.
  20. 21. Present situation 3 In general, capacity factor ( ratio of annual power/ nominal power) similar to wind energy (≈ 0.3). In the present technological development stage, electrical energy cost (€/kWh) is comprised between wind and large PV . To compete with wind energy, it is necessary 1/3 cost reduction for most advanced systems (1/2 if compared to offshore wind ). Relatively large investiments (especially in Europe) by private companies indicate that these cost reductions are believed to be possible (in 10+ years?).
  21. 22. <ul><li>PORTUGAL APPROACH 1970s </li></ul><ul><li>WHY SHORELINE OWC ? </li></ul><ul><li>Most developed type Europe (UK, Norway, Portugal, Spain) </li></ul><ul><ul><ul><ul><ul><li>Japan, India, China, Australia </li></ul></ul></ul></ul></ul><ul><li>Simple and robust </li></ul><ul><li>No moorings </li></ul><ul><li>No submarine cable </li></ul><ul><li>but </li></ul><ul><li>Less available space </li></ul><ul><li>Environmental impact </li></ul><ul><li>Conflicts of use </li></ul>
  22. 23. OWC - OSCILLATING WATER COLUMN OWC AIR TURBINE WAVES <ul><li>Air Turbine (several types) </li></ul><ul><li>Electrical Generator </li></ul><ul><li>Other electrical equipment </li></ul><ul><li>and for Control </li></ul><ul><li>Air Valves (protection, control) </li></ul>OWC Pico Island, Azores 12m <ul><li>Structure </li></ul><ul><li>( concrete , …) </li></ul>OWC Air Chamber
  23. 24. <ul><li>TECHNOLOGY DEVELOPMENT (I) </li></ul><ul><li>OSCILLATING WATER COLUMN </li></ul><ul><li>R&D – OWC + Air turbines </li></ul><ul><li> Mathematical modelling and tank testing </li></ul><ul><li> Wells Air Turbine </li></ul><ul><li> Electrical and control equipment </li></ul><ul><li> Impulse Air Turbine </li></ul><ul><li>Demonstration </li></ul><ul><li>OWC Pico island - 400 kW (1999) – 1st grid connected in the world </li></ul><ul><li>Refurbishment and further testing </li></ul><ul><li>Impulse turbine for floating OWC (Ireland) </li></ul>
  24. 25. PICO OWC PLANT 400 kW, 1999, 1st pre-commercial grid connected
  25. 26. Generator Pico Plant : turbine, generator and casing, during initial tests in 1999 Turbine Valves
  26. 27. OCEAN ENERGY- Floating OWC (B2D2), Ireland TURBINES Floating OWC
  27. 28. OFFSHORE CONVERTERS MARTIFER ENERGIA, S.A. <ul><li>MARTIFER development </li></ul><ul><li>with participation of various Portuguese research centres & companies </li></ul><ul><li>Hydraulic PTO </li></ul><ul><li>Prototype: ca. 1 MW </li></ul>
  28. 29. PROTOTYPE TESTING (I) Archimedes Wave Swing (AWS), NL Bottom mounted converter with oscillating “hat” Mechanical – electrical conversion: linear generator 1 MW Prototype tested in Portugal (2004)
  29. 30. AWS TESTING (2004) Assembly in the dock
  30. 31. MODULE TESTING – WAVE ROLLER, FINLAND Peniche Harbour (100 km N Lisbon) 2007 <ul><li>Bottom mounted flap </li></ul><ul><li>Rotates along axis </li></ul><ul><li>Hydraulic PTO </li></ul><ul><li>h = 10-15 m </li></ul><ul><li>Tank tests at Univ. Porto with IST </li></ul>
  31. 32. WAVE FARM PELAMIS (2008) Articulated floating converter PTO: hydraulic Diameter: 3.5m; length 4  30 = 120m Power: 3  250 kW = 750 kW
  32. 33. <ul><li>PORTUGAL AMBITIOUS TARGET FOR REs </li></ul><ul><li>Renewable electricity 45% by 2010 (EC Directive 39%) </li></ul><ul><li>Scenario for energy: waves 50 MW by 2015 (2005) </li></ul><ul><li>Feed-in Tariff & PPA - Decree-Law 225/2007: </li></ul><ul><li>- 260 €/MWh for first 20MW, then decreases </li></ul><ul><li> </li></ul>MARKET DEPLOYMENT POLICIES
  33. 34. Pilot Zone for Wave Energy Exploitation - Decree-Law 5/2008 - 150 km North of Lisbon, best resource (30 + kW/m pa) - 320 km 2 , 30<h< 80m - Prototypes, pre-commercial and commercial - Capacity: 250 MW - Infrastructures, licensing MARKET DEPLOYMENT POLICIES PILOT ZONE
  35. 36. THANK YOU FOR YOUR ATTENTION [email_address]