Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
What to Upload to SlideShare
Next

0

Share

Yapay Zeka Güvenliği : Machine Learning & Deep Learning & Computer Vision Security

Yapay Zeka Güvenliği : Machine Learning & Deep Learning & Computer Vision Security

http://deeplab.co
cihan@deeplab.co

Related Books

Free with a 30 day trial from Scribd

See all

Related Audiobooks

Free with a 30 day trial from Scribd

See all
  • Be the first to like this

Yapay Zeka Güvenliği : Machine Learning & Deep Learning & Computer Vision Security

  1. 1. AI Security Machine Learning, Deep Learning and Computer Vision Security Cihan Özhan | DeepLab.co | Founder & Autonomous System Developer
  2. 2. https://www.linkedin.com/in/cihanozhan/detail/overlay-view/urn:li:fsd_profileTreasuryMedia:(ACoAAAr146cB3A0HPcosYwmX- LYMZLv1o2zilG8,1605734216934)/ - 128 Pages
  3. 3. https://www.linkedin.com/in/cihanozhan/detail/overlay-view/urn:li:fsd_profileTreasuryMedia:(ACoAAAr146cB3A0HPcosYwmX- LYMZLv1o2zilG8,1605734216934)/ - 47 Pages
  4. 4. https://www.linkedin.com/in/cihanozhan/detail/overlay-view/urn:li:fsd_profileTreasuryMedia:(ACoAAAr146cB3A0HPcosYwmX- LYMZLv1o2zilG8,1605727635360)/ - 92 Pages
  5. 5. https://www.linkedin.com/in/cihanozhan/detail/overlay-view/urn:li:fsd_profileTreasuryMedia:(ACoAAAr146cB3A0HPcosYwmX- LYMZLv1o2zilG8,1605726435879)/ - 59 Pages
  6. 6. DeepLab : Teknolojiler ML/DL/CV Odaklı • Teknolojiler – Go, Python, C/C++, Rust, C# – PyTorch, TensorFlow, Keras, scikit-learn • Web, Mobile, IoT/Edge ve Back-End olarak… – OpenCV – … ve farklı onlarca araç-gereç… • Cloud Computing – AWS Machine Learning – Google Cloud Machine Learning – IBM Watson Machine Learning – Microsoft Azure Machine Learning – … ve farklı birçok Cloud çözüm… • Distributed Systems – Distributed Databases – Distributed Deep Learning
  7. 7. Klişe No : 85496477
  8. 8. AI Objects • Image • Text • File • Voice • Video • Data • 3D Object
  9. 9. ML/DL Applications • Image Classification • Pose Estimation • Face Recognition • Face Detection • Object Detection • Question Answering System • Semantic Segmentation • Text Classification • Text Recognition • Sentiment Analysis
  10. 10. ML/DL Algorithms • Classification (Supervised) • Clustering (Unsupervised) • Regression (Supervised) • Generative Models (Semi-Supervised) • Dimensionality Reduction (Unsupervised) • Reinforcement Learning (Reinforcement)
  11. 11. MLaaS? Machine Learning as a Service ML/DL algoritma ve yazılımlarının, bulut bilişim hizmetlerinin bir bileşeni olarak sunulması modeline denir. MLaaS = (SaaS + [ML/DL/CV])
  12. 12. Hidden Technical Debt in Machine Learning Systems https://papers.nips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf Genellikle tüm ekip, odak ve kaynakların yönlendirildiği alan!
  13. 13. Model Lifecycle Machine Learning Model Development Lifecycle
  14. 14. Model Lifecycle Machine Learning Model Development Lifecycle Biz buradan başlıyoruz! ML model hazırlık süreci Angarya ama mecburi görev: Veriyi hazırlamak! Modeli hazırlamışız! Modeli veri ile eğitiyoruz. Cloud ya da On-Premise Eğitilmiş modeli test verisi ile test ettik! Eğitilen model programsal ortam için paketlenir. Yayın sonrası: Model sürekli izlenir.
  15. 15. Machine Learning projesi Nasıl Yayınlanır?
  16. 16. MartinFowler.com
  17. 17. MartinFowler.com
  18. 18. Machine Learning Security
  19. 19. Temel Güvenlik Sorunları Kasıtlı Hatalar Kasıtsız Hatalar Perturbation Attack Reward Hacking Poisoning Attack Side Effects Model Inversion Distributional Shifts Membership Inference Natural Adversarial Examples Model Stealing Common Corruption Reprogramming ML system Incomplete Testing Adversarial Example in Pyhsical Domain Malicious ML provider recovering training data Attacking the ML supply chain Backdoor ML Exploit Software Dependencies
  20. 20. Adversarial Attack : Image (https://adversarial.io/)
  21. 21. https://openai.com/blog/adversarial-example-research/
  22. 22. https://hackernoon.com/adversarial-attacks-how-to-trick-computer-vision-7484c4e85dc0
  23. 23. Adversarial Attack : Speech-to-Text (https://people.eecs.berkeley.edu/~daw/papers/audio-dls18.pdf)
  24. 24. https://arxiv.org/pdf/2006.03575.pdf
  25. 25. Adversarial Attack : NLP https://arxiv.org/pdf/2005.05909.pdf https://github.com/QData/TextAttack
  26. 26. Adversarial Attack : Remote Sensing (https://arxiv.org/pdf/1805.10997.pdf)
  27. 27. Adversarial Attack : Satellite (https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8823003)
  28. 28. Adversarial Attack : Military https://spectrum.ieee.org/automaton/artificial-intelligence/embedded-ai/adversarial-attacks-and-ai-systems
  29. 29. Adversarial Attack : Military https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-IST-160/MP-IST-160-S1-5.pdf
  30. 30. Adversarial Attack : Autonomous Driving https://web.cs.ucla.edu/~miryung/Publications/percom2020-autonomousdriving.pdf https://github.com/ITSEG-MQ/Adv-attack-and-defense-on-driving-model
  31. 31. Security Research of Tesla Autopilot (40 Pages) https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
  32. 32. Endüstriyel Yapay Zeka ve Otonom Araçlar - Cihan Özhan https://www.youtube.com/watch?v=7RS4tLMfoo0
  33. 33. https://medium.com/@ml.at.berkeley/tricking-neural-networks-create-your-own-adversarial-examples-a61eb7620fd8
  34. 34. Exploit Software Dependencies • Algoritmaları değil, sistem bağımlı olduğu yazılımların güvenlik açıklarından faydalanır. • Önlem: – Security Scan – Security Reports – Dikkat Et : Wrappers ve Pre-Build Environment – Az Dependency Kullan – Dependency Management Tools • Synk : Synk.io • Python Poetry : python-poetry.org • Bandit : – Bandit is a tool designed to find common security issues in Python code. – https://github.com/PyCQA/bandit • pyup.io/safety • requires.io – vb…
  35. 35. Tool/Library Security (TensorFlow) • TensorFlow(gibi araçlar) internal iletişim için tasarlanmıştır, güvensiz(untrusted) ağlarda çalışmak için değil. • Bu araçlar(ModelServer vb.) built-in yetkilendirmeye sahip değildir. • Dosyaları okuyup yazabilir, network üzerinden veri alıp gönderebilir… • (!) TensorFlow Models as Programs • (!) Running Untrusted Models • (!) Accepting Untrusted Inputs https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md
  36. 36. https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
  37. 37. Cihan Özhan Bağlantılar • cihanozhan.com • linkedin.com/in/cihanozhan • medium.com/@cihanozhan • youtube.com/user/OracleAdam • twitter.com/UnmannedCode • github.com/cihanozhan E-Mail • cihan@deeplab.co

Yapay Zeka Güvenliği : Machine Learning & Deep Learning & Computer Vision Security http://deeplab.co cihan@deeplab.co

Views

Total views

308

On Slideshare

0

From embeds

0

Number of embeds

4

Actions

Downloads

9

Shares

0

Comments

0

Likes

0

×