Power passport hybrid final

457 views

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
457
On SlideShare
0
From Embeds
0
Number of Embeds
240
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Power passport hybrid final

  1. 1. Power  Learning  Stations                Name:____________________________       Purpose:  Each  station  addresses  a  topic  that  will  be  found  on  your  final  exam  and  will  be  important  to  the   completion  of  your  Personal  Power  Project.  Summative  assessments  will  be  open-­‐note.     Requirements:     • You  will  have  3-­‐4  class  periods  to  work.  If  you  are  unable  to  complete  any  of  the  learning  stations  in   class,  you  are  required  to  complete  them  on  your  own  time.     • All  work  must  be  neat  and  organized  so  that  we  are  able  to  quickly  access  and  review  it.   • You  can  work  in  any  order.  When  you  finish  a  station,  stamp/sticker  your  passport.   • At  the  end  of  each  class,  note  your  progress  for  your  current  station  (including  date).   • Store  your  Energy  Passport  Packet  in  your  Science  folder,  which  must  stay  in  the  classroom.     How  To:   1. When  you  see  a  red  pencil  icon  (!),  write  the  title  on  a  new  page  in  your  notebook.   Learning  Station:    !  What  is  Climate  Change?       2. When  you  see  a  green  pencil  icon  (!),  this  is  a  required  term,  concept  or  diagram.   Learning  Station:  !  Difference  between  weather  and  climate     ØAs  you  can  see  in  the  section  circled  in  red,  when  you  take  notes  you  should  relate  information  back  to   the  main  concept  for  that  section.  Note  taking  is  a  learning  strategy!     3. If  you  get  stuck,  are  confused  or  have  a  specific  question,  remember  “3  before  me.”   If  no  one  else  can  answer  your  question,  write  your  question  on  your  passport  and  move  on.     4. Check-­‐off  each  task  in  a  learning  station  as  you  complete  it.      
  2. 2. Power Passport   Completed   (date)   Learning  Station   Questions/Ideas/Concerns   (cross-­‐out  when  answered)   Progress  (date)   (still  working,  need  help,  etc.)     We  Have  The  Power!   Clean  Power  vs.  Dirty  Power               Global  Carbon  Budget               What  is  Climate  Change?                 Evidence  of  Climate  Change   &  Measuring  Human   Contributions           Impact  of  Climate  Change     on  Humans             Impact  of  Climate  Change     on  Nature            
  3. 3. !  WEHAVETHEPOWER!   To Be The Change The goal of this unit is to inspire and create change. Our current system of energy consumption is a colossal disaster because it relies almost entirely on fossil fuels. We love dinosaurs* as much as everybody else, but here’s the deal: 1. Fossil fuels are finite! There is a limited supply of coal, oil, and natural gas on the planet. Anyone who tells you otherwise is trying to sell you something (probably coal, oil or natural gas). 2. Fossil fuels are expensive! Even coal and natural gas cost more than wind or sunshine. In Hawaii, we rely almost entirely (90%) on oil, which is particularly pricey. Your wallet will personally thank you if you get us off this costly habit. 3. Fossil fuels accelerate climate change! The stable level of greenhouse gases in the atmosphere is 350 parts per million (ppm). This is the point where climate change happens at a natural rate and life has a chance to adapt. We are currently at 393 ppm! Red flag! Danger! Each of us is responsible for this number, and we all have the power to stop it from getting even higher. You know that old saying, “Better safe than sorry”? No matter where you stand on the climate change discussion, it’s kind of one those risks that’s not worth taking. All life on the planet is at stake (well, certainly human life is). 4. Fossil fuels are dirty! Three words: Gulf Oil Spill. It’s not just the greenhouse gases pumped into our atmosphere. It’s the oil slicks on our oceans and beaches. It’s the dead seabirds and fish. It’s the cleared rainforests for drilling. It’s the dug up mountains and destroyed rivers. It’s all the toxic by-products that get leached into water sources and soil near mines. Yuck! 5. Fossil fuels threaten security and violate human rights! From Nigeria to Indonesia to Ecuador, lives are lost every year to conflicts related to oil. Local people are given little to no say in the mining process and see none of the profits. Their water and food sources are polluted, and their traditional cultures and means of subsistence are jeopardized. Since the majority of our oil in Hawaii comes from foreign sources, we are each indirectly implicated in these conflicts and human rights violations. Furthermore, The United States Department of Defense has deemed our reliance on foreign oil a threat to national security. In Hawaii, what happens if we get cut off from our supply of oil? The official answer is that we’ll have only 14-21 days of resources, including water. In short, fossil fuels are not safe. The bottom line? Fossil fuels are not cool. Pun intended. *Fossil fuels really come from ancient plants and tiny sea creatures, NOT dinosaurs.
  4. 4.     WEHAVETHEPOWER!(Ct’d) Let’sClarify: The fossil fuel industry is not evil and neither are those involved in it. We all benefit from fossil fuels in one way or another. That doesn’t change the fact that the Hawaii Clean Energy initiative requires that we move to 70% clean energy by 2030. So let’s get going!   Clean Power Clean  Power  refers  to  an  entire  system  of   energy  consumption,  production  and   distribution  that  relies  on  renewable  energy   resources,  energy  efficient  designs,  and   conservation  habits  and  attitudes.  Clean   Power  neutralizes  greenhouse  gas   emissions  and/or  sequesters  carbon   dioxide,  produces  no  air  pollution,  can  be   generated  locally,  creates  new  jobs,  and…   IS SUSTAINABLE!     Dirty Power Dirty  Power  refers  to  an  entire  system  of   energy  consumption,  production  and   distribution  that  relies  on  finite  resources,   energy  inefficient  designs,  and  wasteful   habits  and  attitudes.  Dirty  power   significantly  contributes  to  climate  change,   pollutes  the  air,  causes  numerous  health   problems,  compromises  national  security,   and…   IS UNSUSTAINABLE!         Knowledge is power. Knowledgeable students have the power to invent the future. My mom tells me that maybe I should leave my big worries, like the environment, to the grown-ups. I told her that I would except you guys are doing a terrible job.   -Hawaii student, age 9 To Create A Sustainable Future
  5. 5.   !  Fossil  Fuels  are  incredibly  useful.  List  4-­‐5  reasons  that  they  are  not  sustainable  for  the  future.   (From  the  “We  Have  The  Power  To  Change”  page)       o      Watch  Post  Carbon  Future  Video:  https://www.youtube.com/watch?v=cJ-­‐J91SwP8w   Cover  these  topics  in  your  notes:     !  Explain  at  least  3  inventions  that  led  to  our  dependence  on  fossil  fuels.   !  What  does  advertising/consumerism  have  to  do  with  fossil  fuel  consumption?     !  What  4  things  do  we  have  to  do  to  prepare  for  a  post-­‐carbon  future?  Why?     o      Watch  Climate  Reality:  Grassroots  Effort!    https://www.youtube.com/watch?v=y0-­‐J8NGM_v4       o      Choose  2-­‐3  videos  from  this  site:  http://climaterealityproject.org/video/     !  Write  title  of  video  and  what  you  learned  (this  can  be  quite  short).       [STAMPYOURPASSPORT] We  Have  the  Power!  (Ct’d)  
  6. 6. !  The  Global  Carbon  Budget   The  key  to  understanding  the  impact  of  our  energy  system  is  actually  a  single  letter...C  .     Watch  the  following  short  videos:  http://www.npr.org/news/specials/climate/video/       o      Episode  1:  It’s  All  About  Carbon   !  Carbon  is  in  all  living  things.   !  Carbon  is  “social.”  It  likes  bonding!     o    Episode  2:  Making  Carbon  Bonds   !  What  is  the  chemical  formula  for  methane?   !  Why  is  there  carbon  in  fossil  fuels?     o      Episode  3:  Breaking  Carbon  Bonds   !  Chemical  bonds  hold  atoms  together.  When  a  chemical  bond  is  broken,  the  atoms  search  for  new   partners  and,  in  this  process,  energy  is  released.       o      Episode  4:  Carbon  in  Love  (watch  the  clip  and  read  and  highlight  the  information  on  the  next  page)   !  Who  does  carbon  love?   !  What  happens  when  radiant  energy  from  the  sun  hits  CO2  in  the  atmosphere?   !What  is  a  carbon  sink?   !List  the  six  major  carbon  stores.   !What  is  a  carbon  source?   !List  three  natural  carbon  sources.     o      Read  and  look  at  the  diagrams  on  pgs.  6-­‐9  in  order  to  learn  more  about  the  carbon  cycle.     !Draw  an  annotated  diagram  of  the  carbon  cycle.     (An  annotated  diagram  explains  the  processes  involved  with  detailed  captions.)     o      Episode  5:  What  do  we  do?   !What  is  carbon  sequestration?   !According  to  the  film  clip,  what  are  our  main  choices  when  it  comes  to  climate  change?   !Categories  of  solutions:   • Reduce  our  dependence  on  fossil  fuels,  which  will  reduce  our  footprint.     • Expand  renewable  energy  sources  and  increase  energy  efficiency  through  design.     • Preserve  open  green  space.  Photosynthesis!   • Consume  less  (conservation).     [STAMPYOURPASSPORT]
  7. 7. Carbon  Sinks,  Carbon  Sources,  and  the  Carbon  Cycle     Carbon  dioxide  (CO2)  and  its  sister  greenhouse  gas,  Methane  (CH4),  are  continually  recycled  on  Earth.  Processes   that  release  CO2  into  the  atmosphere  are  called  carbon  “sources”,  while  processes  that  absorb  it  are  called   carbon  “sinks”.  Forests,  soil,  oceans,  the  atmosphere,  permafrost  and  fossil  fuels  are  important  stores  of  carbon.   Carbon  is  constantly  moving  between  these  different  stores  that  act  as  either  “sinks”  or  “sources.”       A  sink  absorbs  more  carbon  than  it  gives  off,  while  a  source  emits  more  than  it  absorbs.  At  any  give  time,  one  of   the  stores  can  be  considered  either  a  source  or  a  sink.  For  example,  in  the  fall,  deciduous  forests  lose  their   leaves,  increasing  decomposition  and,  therefore,  increasing  the  amount  of  carbon  released.  So,  at  this  point,  they   may  be  considered  a  source.  However,  in  the  springtime,  the  deciduous  forest  becomes  a  sink.     The  amount  of  carbon  in  the  atmosphere  at  any  one  time  depends  on  the  balance  that  exists  between  the  sinks   and  sources.  This  system  of  sinks  and  sources  operates  all  over  the  planet  and  is  known  as  the  carbon  cycle.     Natural  sources  of  atmospheric  CO2  include  volcanoes,  fires,  decomposition,  respiration,  digestion  and,  under   certain  conditions,  oceans  and  fresh  water  bodies.  The  latter  can  release  large  amounts  of  dissolved  CO2  when   waters  warm  up  or  are  disturbed  by  storms  or  tremors.       Natural  sinks  for  atmospheric  CO2  include  photosynthesis,  forests,  oceans  and  freshwater  bodies,  fossil  fuels,   permafrost  and  carbonate  rocks.    Before  the  Industrial  Revolution,  the  amount  of  carbon  moving  between  trees,   soil,  oceans  and  the  atmosphere  was  relatively  balanced.  The  forests  of  the  world  are  an  important  carbon  sink.   However,  deforestation  is  reducing  the  size  of  this  sink,  allowing  more  carbon  dioxide  to  remain  in  the   atmosphere.       Photosynthesis  accounts  for  about  half  of  the  carbon  extracted  from  the  atmosphere.  Consider  the   photosynthesis  equation:  6  H2O  (water)  +  6  CO2  +  sunlight  energy  =  C6H12  O6  (glucose)  +  6  O2  (oxygen).     Notice  how  the  carbon  found  a  new  bond  in  the  form  of  a  sugar.  Land  plants  take  most  of  their  carbon  dioxide   from  the  air  around  them  while  aquatic  plants  in  lakes,  seas  and  oceans  use  carbon  dioxide  dissolved  in  water.   Phytoplankton  is  one  of  these  important  plants  as  they  produce  up  to  50%  of  the  atmospheric  oxygen  through   photosynthesis.       Other  important  sinks  are  the  world’s  oceans.  Carbon  dioxide  dissolves  in  seawater.  Unfortunately,  the  world’s   oceans  are  absorbing  an  unprecedented  amount  of  carbon  dioxide,  which  is  increasing  their  acidity  and  possibly   threatening  the  long-­‐term  survival  of  many  marine  species,  especially  calcifying  organisms  including  corals,   shellfish  and  phytoplankton  (UNESCO,  2004).       The  cycling  of  carbon  between  the  atmosphere,  plants  and  animals  can  take  place  quickly,  over  the  space  of  days   or  weeks.  Individual  carbon  atoms  may  cycle  through  plants  and  animals  several  times  a  year.  Other  parts  of  the   cycle,  especially  those  involving  the  storage  of  carbon  as  an  underground  mineral,  may  take  millions  of  years  to   complete.  Human  perturbations  to  the  carbon  cycle  are  impacting  the  maintenance  of  the  concentration  of   atmospheric  carbon.  This  is  leading  to  an  increase  in  the  amount  of  carbon  in  the  atmosphere  as  humans   produce  carbon  dioxide  and  methane  far  faster  than  the  natural  sinks  can  absorb  it.  Because  fossil  fuels  are   carbon  sinks,  the  use  of  oil,  gas  and  coal  are  the  greatest  contributors  to  this  carbon  loading,  as  they  are  no   longer  storing  carbon,  but  are,  instead,  releasing  it.   !  The  Global  Carbon  Budget  
  8. 8. !  The  Global  Carbon  Budget  (ct’d)     o      Review  this  information  to  use  in  your  carbon  cycle  diagram.     All  living  organisms  contribute  to  the  carbon  cycle  in  some  way.     • Producers  (plants)  acquire  CO2  from  the  air  or  water  and,  through  photosynthesis,  use  it  to   build  organic  compounds  (carbs,  proteins  &  fats).   • Producers  are  then  eaten  by  consumers,  which  use  the  organic  compounds  (carbs,   proteins  &  fats),  and  release  some  carbon  back  to  the  air  or  water  as  CO2  waste  during   respiration  (breathing).  Plants  also  release  carbon  back  to  the  air  or  water  during  cellular   respiration.   • As  organisms  die,  they  are  broken  down  by  decomposers  (like  fungi  and  bacteria),  which   releases  some  carbon  back  into  the  soil,  water  and  air.       • Fossil  fuels  and  permafrost  forms  over  hundreds  of  millions  of  years  from  the  remains  of   living  organisms.    So  this  fossilization  process  retains/sequesters  Carbon.       Non-­‐living  processes  also  play  a  role  in  the  carbon  cycle.         • The  process  of  combustion  or  burning  organic  material  (once  living)  releases  carbon  dioxide   back  into  the  air.  This  includes  wood,  plants,  and  fossil  fuels.   • Geologic  events  like  volcano  eruptions  also  release  fossil  fuels.   • Since  many  of  the  movements  of  carbon  are  linked  to  those  of  oxygen  (carbon  hearts  oxygen),   their  paths  are  sometimes  described  together  as  the  carbon  and  oxygen  cycle.     The  Global  Carbon  Budget  it  out  of  balance!     • Before  this  century,  CO2  made  up  about  300  parts  per  million  (ppm)  of  the  Earth’s  atmosphere.   • During  this  past  century,  CO2  has  reached  a  concentration  of  more  than  360  ppm.   • All  the  planet’s  photosynthetic  organisms  cannot  process  all  of  this  excess  CO2.   • Since  1950  alone,  CO2  levels  have  increased  by  nearly  100ppm.   • As  the  concentration  of  greenhouse  gasses  in  atmosphere  increases,  the  Earth  gets  warmer  and   warmer,  leading  to  global  climate  change.   • Average  global  temperatures  have  climbed  1.4  degrees  Fahrenheit  since  1880.   • The  last  decade  was  the  hottest  on  record  with  8  out  of  the  10  hottest  summers  ever.   • Montana’s  Glacier  National  Park  now  has  only  27  glaciers,  versus  150  in  1910.   • Sea  levels  are  rising  at  an  alarming  rate  of  3.2  mm  per  year.          
  9. 9. !  The  Global  Carbon  Budget  (ct’d)  
  10. 10. !  The  Global  Carbon  Budget  (ct’d)   End  of  Global  Carbon  Budget  Section  
  11. 11. The  next  couple  of  pages  have  diagrams,  tables,  written  explanation  and  websites   to  explore.  All  of  these  resources  provide  detailed  information  about  climate   change.       !  Take  notes  at  your  own  discretion.     !  After  reviewing  all  of  the  information  in  this  section,  draw  an  annotated  diagram  that  includes  the   following  information:   • Sun,  Earth     • Atmospheric  Greenhouse  Gases:  CO2  and  H2O  Vapor  (most  abundant);  Methane  CH4,  Nitrous   Oxide  N2O,  CFC’s  (chlorofluorocarbons)   o Note  human  activities  that  create  each  greenhouse  gas   • radiant  energy  from  the  sun  passing  through  the  Earth’s  atmosphere   • Shorter  wavelength  energy  is  absorbed  by  Earth’s  surface   • Longer  wavelength  energy  is  re-­‐radiated   • GHG’s  vibrate  and  remit  heat  (infrared  waves)   • Feedback   • Greenhouse  effect   • 350  ppm       [STAMPYOURPASSPORT]   !  What  is  Climate  Change?    
  12. 12. o      Read  and  highlight  the  Explanation  from  Columbia  University  Climate  Center     The presence of greenhouse gases in the atmosphere is a natural component of the climate system and helps to maintain the Earth as a habitable planet. Greenhouse gases are relatively transparent to incoming solar radiation, allowing the sun’s energy to pass through the atmosphere to the surface of the Earth. The energy is then absorbed by the Earth’s surface, used in processes like photosynthesis, or emitted back to space as infrared radiation. Some of the emitted radiation passes through the atmosphere and travels back to space, but some is absorbed by greenhouse gas molecules and then re-emitted in all directions. The effect of this is to warm the Earth’s surface and the lower atmosphere. Water vapor (H2O) and carbon dioxide (CO2) are the two largest contributors to the greenhouse effect. Methane (CH4), nitrous oxide (N2O), chlorofluorocarbons (CFCs) and other greenhouse gases are present only in trace amounts, but can still have a powerful warming effect due to their heat-trapping abilities and their long residence time in the atmosphere. Without the greenhouse effect, Earth’s average temperature would be -0.4°F (-18°C), rather than the present 59°F (15°C). Concentrations of greenhouse gases – and especially carbon dioxide – have risen over the past two hundred and fifty years, largely due to the combustion of fossil fuels for energy production. Since the Industrial Revolution in the eighteenth century the concentration of carbon dioxide in the atmosphere has risen from about 270 parts per million (ppm) to about 370 ppm. Concentrations of methane have also risen due to cattle production, the cultivation of rice, and release from landfills. Nearly one-third of human-induced nitrous oxide emissions are a result of industrial processes and automobile emissions. Global Climate Change in the Twentieth Century The climate system includes a great deal of natural variability, and climate fluctuations have always been part of the Earth’s 4.6 billion year history. However, over the past century changes in concentrations of greenhouse gases in the atmosphere are of an unprecedented rate and magnitude. Human population growth has led to increasing demands for energy and land resources. Through the burning of fossil fuels to produce energy for industrial use, transportation, and domestic power, and through land-use change for agriculture and forest products, humans have been altering the Earth’s energy balance. Scientists believe that these changes have already begun to alter the global climate. !  Precautionary Principle If the effects of a human-induced change would be very large, perhaps catastrophic, those responsible for the change must prove that it will not do harm before proceeding. o      Explore  the  following  sites  to  learn  more  about  climate  change   (Take  your  time…at  least  20  minutes!)   • http://www.epa.gov/climatechange/kids/ - a student guide to climate change   • http://environment.nationalgeographic.com/environment/global-warming/   • www.350.org – check out their video page under the “resources” tab   !  What  is  Climate  Change?  (ct’d)  
  13. 13. Ø  Sunlight  is  radiant   energy  and  includes   various  wavelengths,  as   shown  in  the  diagram   below.   !  What  is  Climate  Change?  (ct’d)   Ø  Infrared  radiation  is   the  primary  energy  that   causes  greenhouse   gasses  to  vibrate  and   heat  up.  Think  about   jumping  around—your   body  gets  warmer!  If  a   room  full  of  students  is   jumping  around,  the   room  gets  warmer,  as   your  heat  is  remitted.  
  14. 14. Read  &  Highlight  the  Environmental  Protection  Agency’s  Explanation  of  the  Impact  of   Greenhouse  Gasses  (GHG’s)   The  major  greenhouse  gases  emitted  into  the  atmosphere  through  human  activities  are  carbon  dioxide,   methane,  nitrous  oxide,  and  fluorinated  gases  (CFC’s)    (See  table  on  next  page).  Some  of  these  gases  are   produced  almost  entirely  by  human  activities;  others  come  from  a  combination  of  natural  sources  and  human   activities.  Many  of  the  major  greenhouse  gases  can  remain  in  the  atmosphere  for  tens  to  hundreds  of  years   after  being  released.     Several  factors  determine  how  strongly  a  particular  greenhouse  gas  will  affect  the  Earth's  climate.  One  factor  is   the  length  of  time  that  the  gas  remains  in  the  atmosphere.  A  second  factor  is  each  gas’s  unique  ability  to  absorb   energy.  By  considering  both  of  these  factors,  scientists  calculate  a  gas's  global  warming  potential,  as  compared   to  an  equivalent  mass  of  carbon  dioxide  (which  is  defined  by  a  global  warming  potential  equal  to  1).   Major Greenhouse Gases Associated With Human Activities Greenhouse gas How it's produced Average lifetime in the atmosphere 100-year global warming potential Carbon dioxide Emitted primarily through the burning of fossil fuels (oil, natural gas, and coal), solid waste, and trees and wood products. Changes in land use also play a role. Deforestation and soil degradation add carbon dioxide to the atmosphere, while forest regrowth takes it out of the atmosphere. see below* 1 Methane Emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and agricultural practices and from the anaerobic decay of organic waste in municipal solid waste landfills. 12 years 21 Nitrous oxide Emitted during agricultural and industrial activities, as well as during combustion of fossil fuels and solid waste. 114 years 310 Fluorinated gases A group of gases that includes hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride, among other chemicals. These gases are emitted from a variety of industrial processes and commercial and household uses, and do not occur naturally. Sometimes used as substitutes for ozone-depleting substances such as chlorofluorocarbons (CFCs). A few weeks to thousands of years Varies (the highest is sulfur hexafluoride at 23,900) This table shows 100-year global warming potentials, which describe the effects that occur over a period of 100 years after a particular mass of a gas is emitted. EPA uses global warming potentials from the Intergovernmental Panel on Climate Change's (IPCC's) Second Assessment Report, 1 * Carbon dioxide's lifetime is poorly defined because the gas is not destroyed over time, but instead moves among different parts of the ocean–atmosphere–land system. Some of the excess carbon dioxide will be absorbed quickly (for example, by the ocean surface), but some will remain in the atmosphere for thousands of years, due in part to the very slow process by which carbon is transferred to ocean sediments. !  What  is  Climate  Change?  (ct’d)  
  15. 15. !  What  is  Climate  Change?  (ct’d)   !  350 is the magic number Scientists have determined that a stable level of carbon dioxide in the atmosphere is 350 ppm (parts per million). That’s actually their high-end number...290 ppm is ideal. We are currently over 390ppm and increasing 2ppm every year. With more CO2 in the atmosphere, more heat gets trapped on the planet, causing average global temperatures to rise. Quick Look at Basic Concepts: !  Add to your notes if you are missing anything. • Carbon is present everywhere on the planet and occurs naturally in the atmosphere. • Plants absorb carbon dioxide (CO2) through photosynthesis and respire oxygen. Humans and animals inhale oxygen and respire CO2. • Anything that absorbs more carbon dioxide from the atmosphere than it emits is known as a carbon sink. Forests, oceans, soil, fossil fuels and polar icecaps are all carbon sink reservoirs. • A carbon source is anything that emits more carbon dioxide than it absorbs. Humans are the greatest carbon source with our factories, cars, planes and buildings. Humans release extra CO2 when we combust fossil fuels and cut down trees. • Feedback is when CO2 release is caused by global warming. A good example is when polar icecaps melt. They release huge amounts of trapped carbon, so the problem is actually amplifying itself. • The main greenhouse gases are: carbon dioxide, methane, nitrous oxide, water vapor and CFC’s. Water vapor and carbon dioxide are the most abundant. However, methane and nitrous oxide have a greater warming potential. • Global warming occurs when greenhouse gases (GHGs) like CO2 in Earth's atmosphere vibrate, heat up and then remit the heat back down to Earth’s surface (the greenhouse effect). • Global warming does not mean everything gets hotter. It means climate trends change. Hence, climate change is the better term to use. • Climates are controlled by the oceans. When the oceans’ average temperatures change slightly, weather patterns change. This is accelerated by the loss of polar ice caps, which not only store carbon, but also reflect sun’s energy away from earth. End  of:  What  is  Climate  Change?    
  16. 16. Unit  Concept:  Our  energy  systems  have  a  measurable  impact  on  humans  and  the  environment.     !The  facts:     • Climate  change  is  a  natural  cycle.  However,  since  1950  alone,  CO2  levels  have  increased  by   nearly  100ppm.  We  measure  these  levels  at  observatories  all  over  the  world,  including  a  station   on  Mauna  Loa.   • GHGs  are  at  their  highest  levels  now  than  any  other  time  in  the  past  650,000  years.  Scientists   measure  historical  GHG  levels  through  the  fossil  record  and  ice  core  data.   • Evidence  of  this  climate  change  is  everywhere  around  the  world,  from  melting  glaciers  to  rising   sea  levels  to  exploding  pine  beetle  populations  to  dying  coral  reefs.   • Scientists  report  that  if  the  global  CO2  rate  continues  to  increase,  we  will  experience  more   severe  storms,  more  floods  followed  by  longer  droughts,  and  mass  extinctions  of  plant  and   animal  life  as  natural  habitats  change  too  quickly  for  species  to  adapt.   !The  solutions:   • Our  energy  consumption  can  be  translated  into  a  carbon  footprint  –this  is  a  measure  of  the   amount  of  carbon  we  release  into  the  atmosphere,  based  on  our  fossil  fuel  combustion.  If  we   lower  our  carbon  footprint,  we  lower  our  impact.   o      Explore  the  Data  (continued  on  next  page):   !  For  each  site,  note  at  least  2  pieces  of  specific  data  that  you  feel  is  useful     (consider  drawing  the  graphs).  You  will  need  to  spend  time  actually  studying  the  graphs  in  order  to   understand  the  data.     EPA’s  indicators  of  Climate  Change  in  the  United  States:   http://www.epa.gov/climate/climatechange/science/indicators/weather-­‐climate/temperature.html     !  Evidence  of  Climate  Change  &   Measuring  Human  Impact  
  17. 17. o    Explore  the  Data  (ct’d):   !  For  each  site,  note  specific  data  that  you  feel  is  useful  (consider  drawing  the  graphs).     Arctic  Sea  Ice   https://www.youtube.com/watch?v=H-­‐BbPBg3vj8#aid=P79gVSICKMA       Mauna  Loa  Observatory   http://co2now.org/         o    Measuring  Human  Impact:   !  Our  carbon  footprint  is  a  measure  of  our  impact.   !  Take  a  look  at  the  factors  that  contribute  to  a  Carbon  Footprint  and  list  4-­‐5.    (We  will  measure  our  carbon  footprints  later  in  the  unit.)   http://www.nature.org/greenliving/carboncalculator/         [STAMPYOURPASSPORT] !  Evidence  of  Climate  Change  &   Measuring  Human  Impact  (ct’d)  
  18. 18. !  Impact  of  Climate  Change  on  Nature   o EPA’S  Explanation  of  the  Impact  on  Oceans   ! Note the major impacts on oceans and the causes.   The  oceans  and  atmosphere  interact  constantly—both  physically  and  chemically—exchanging  energy,  water,   gases,  and  particles.  This  relationship  influences  the  Earth's  climate  on  regional  and  global  scales.  It  also  affects   the  state  of  the  oceans.   Covering  about  70  percent  of  the  Earth's  surface,  the  oceans  store  vast  amounts  of  energy  absorbed  from  the   sun  and  move  this  energy  around  the  globe  through  currents.  The  oceans  are  also  a  key  component  of  the   Earth's  carbon  cycle.  Oceans  store  a  large  amount  of  carbon,  either  in  dissolved  form  or  within  plants  and   animals  (living  or  dead).   What  is  happening?   As  greenhouse  gases  trap  more  energy  from  the  sun,  the  oceans  are  absorbing  more  heat,  resulting  in  an   increase  in  sea  surface  temperatures  and  rising  sea  level.  Although  the  oceans  help  reduce  climate  change  by   storing  one-­‐fifth  to  one-­‐third  of  the  carbon  dioxide  that  human  activities  emit  into  the  atmosphere,  1  increasing   levels  of  dissolved  carbon  are  changing  the  chemistry  of  seawater  and  making  it  more  acidic.   Why  does  it  matter?   Changes  in  ocean  temperatures  and  currents  brought  about  by  climate  change  will  lead  to  alterations  in  climate   patterns  around  the  world.  For  example,  warmer  waters  may  promote  the  development  of  stronger  storms  in   the  tropics,  which  can  cause  property  damage  and  loss  of  life.  Other  impacts  come  from  increased  ocean  acidity,   which  reduces  the  availability  of  some  types  of  minerals,  thus  making  it  harder  for  certain  organisms,  such  as   corals  and  shellfish,  to  build  their  skeletons  and  shells.  These  effects,  in  turn,  could  substantially  alter  the   biodiversity  and  productivity  of  ocean  ecosystems.   Changes  in  ocean  systems  generally  occur  over  much  longer  time  periods  than  in  the  atmosphere,  where  storms   can  form  and  dissipate  in  a  single  day.  Interactions  between  the  oceans  and  atmosphere  occur  slowly  over  many   years,  and  so  does  the  movement  of  water  within  the  oceans,  including  the  mixing  of  deep  and  shallow  waters.   Thus,  trends  can  persist  for  decades,  centuries,  or  longer.  For  this  reason,  even  if  greenhouse  gas  emissions  are   stabilized  tomorrow,  it  will  take  many  more  years—decades  to  centuries—for  the  oceans  to  adjust  to  changes  in   the  atmosphere  and  the  climate  that  have  already  occurred.   o Explore  the  indicators  of  ocean  changes: ! Make a short note about each: heat, surface temp, sea level, acidification http://www.epa.gov/climate/climatechange/science/indicators/oceans/index.html
  19. 19. !  Impact  of  Climate  Change  on  Nature  (Ct’d)   o    Explore  the  Top  Ten  Places  to  Save  from  Climate  Change  &     the  National  Wildlife  Federations  Report  on  Climate  Change   http://www.endangered.org/its-­‐getting-­‐hot-­‐out-­‐there/     http://www.nwf.org/Wildlife/Threats-­‐to-­‐Wildlife/Global-­‐Warming.aspx       !  Note:  impact  on  3  specific  species  and  3  ecosystems.      [STAMPYOURPASSPORT]  
  20. 20.   !  Impact  of  Climate  Change  on  Humans   o    Explore  the  interactive  map  on  Energy.Gov   http://www.energy.gov/science-­‐innovation/climate-­‐change       !  Impact  on  Energy  Sector  (consider  rising  prices  and  fossil  fuel  shortages)     Your  notes  should  include:   • General  impacts  due  to     o Increasing  Temperatures       o Decreasing  Water       o Increasing  storms,  flooding  and  sea  level  rise         • At  least  3  specific  examples         o    Watch  the  Following  Clips   Tuvalu:  http://media.adelaidenow.com.au/multimedia/2008/10/tuvalu/tuvalu-­‐perthnow.html           Island  President  Trailer:  http://theislandpresident.com/  (watch  the  trailer)         Climate  Change  Impact  on  Japan:  https://www.natureasia.com/ja-­‐jp/advertising/sponsors/climate-­‐change/agriculture         !  Impact  on  growing     • General  issues  related  to  growing  food  and  climate  change  (soil  salinity,  flooding,  etc.)   • Specific  example     !  Impact  on  culture  and  living  conditions   • General  issues  related  to  cultural  practices  and  living  conditions   • Specific  example     !  Impact  on  immigration   • General  issue  of  “climate  refugees”   • Specific  example     [STAMPYOURPASSPORT]

×