Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
1. 深度學習發展歷程
2. R語言簡介
3. 監督式學習(Supervised Learning)
3.1. 線性迴歸(Linear Regression)
3.2. 邏輯迴歸(Logistic Regression)
3.3. 神經網路(Neural Network, NN)
3.4. 鳶尾花(IRIS)案例說明
4. 非監督式學習(Unsupervised Learning)
4.1. 主成份分析(Principal Components Analysis, PCA)
4.2. 受限波茲曼機(Restricted Boltzmann Machine, RBM)
4.3. 自動編碼器(Auto Encoder, AE)
4.4. 鳶尾花(IRIS)案例說明
5. 進階議題
5.1. 卷積神經網路(Convolutional Neural Network, CNN)
5.2. 遞歸神經網路(Recurrent Neural Network, RNN)
5.3. 過適問題(Overfitting)
6. 附錄─梯度下降法(Gradient Descent)
Login to see the comments