Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
biology for sensors and sensors for biology        Darren Reynolds   Aquatic Organic Fluorescence from phenomenon to appli...
17th and 18th Centuries – intellectualmovement - ‘Enlightenment’ the ‘Ageof Reason’.Newtonian science exerted its greatest...
Maxwell          de Broglie                               BornThompson         Wein                                     Ru...
Defined as the emission of light by asubstance, where the emitted lightcannot be attributed to incandescence,i.e. thermal ...
Sir G. G. Stokes     (1852)                   biology for sensors and sensors for biology
biology for sensors and sensors for biology
Observed the fluorescence properties ofhumic and fulvic substances and organicmatter in natural waters........... ‘Gelbsto...
we have and are experiencing atechnological revolution largely drivenby breathtaking advances in;  Applied electro optics ...
Optical Space    www.turnerdesigns.combiology for sensors and sensors for biology
Optical Space                     Wastewater fluorescencebiology for sensors and sensors for biology
Optical Space                                  Wastewater fluorescencebiology for sensors and sensors for biology
Optical Space                                           600.00   1000                                                     ...
Optical Space    a)                             d)    b)                             e)    c)                             ...
Singlet Excited States                                         Triplet Excited                                            ...
biology for sensors and sensors for biology
biology for sensors and sensors for biology
600.00   1000                                                                                                             ...
Whitening Agents                    600.00   1000                                                                         ...
Fluorescent Dyes                    600.00   1000                                                                         ...
Chlorophyll fluorescence                    600.00   1000                                                                 ...
Humic/Fulvic Material                    600.00   1000                                                                    ...
Microbial Processes                    600.00   1000                                                                      ...
biology for sensors and sensors for biology
Autochthonous material is created in-situthrough microbial activity – a reflection of thephys/chem/biol processesThis prov...
Bacterial origin.                                     Shelley et al., (1980),                                     Dalterio...
Papers                              Aquatic Fluorescence Research                                  Wastewater             ...
– Water recycling/nano filtration– Drinking water treatment processes -  chlorination– Urban watersheds quality monitoring...
Real-time monitoring of water andwastewater quality using a fluorescencetechniqueOptical Spectroscopy in the AquaticEnviro...
biology for sensors and sensors for biology
The characterisation of sewage usingfluorescenceEffluent and Sewage Network ManagementInst. Mech. Engineers (February 2000...
biology for sensors and sensors for biology
Field based fluorescence devices forurban/fresh/drinking/waste watersystems have been limited;– Low knowledge base– Techno...
Real-time monitoring of river water qualityusing in-line continuous acquisition offluorescence excitation and emissionmatr...
biology for sensors and sensors for biology
Samples                                                              Correlation                                          ...
a)                          d)              VII                           III                                          b) ...
A concerted effort to tackle theapproaching data Tsunami is necessaryApplication driven technology needs to bedeveloped, t...
Fluoro-sensor Development Tryptophan-like fluorescence Laboratory assessment Field deployment             biology for sens...
Preliminary Field Trials   biology for sensors and sensors for biology
•   Aquatic fluorescence is not new•   Fluorescence sensing has history•   Technology Readiness Level is high•   Clear Ide...
• Application-led field studies/trials  – Sensor performance  – Generation of data sets for evaluation  – Development of a...
Hudson, N., Baker, A., and Reynolds,D. (2007). Fluorescence analysis ofdissolved organic matter in natural,waste and pollu...
Henderson, R.K. et al. (2009).Fluorescence as a potentialmonitoring tool for recycled watersystems: A review. Water Resear...
Paula G. Coble, Andy Baker, JamieLead, Robert M. Spencer, Darren M.Reynolds.2013 Cambridge University Press        biology...
John Attridge          Chelsea Technologies Group, UK. Robin Thorn & Gareth Robinson    Centre for Research in Biosciences...
darren.reynolds@uwe.ac.uk     http://www.biosensingtech.co.uk/           biology for sensors and sensors for biology
Upcoming SlideShare
Loading in …5
×

New Sensors Effluent monitoring - 19 July 2012

560 views

Published on

Aquatic Organic Matter Fluorescence – from phenomenon to applications

Dr Darren Reynolds - Associate Professor in Bio-Sensing Research
University of the West of England

Published in: Real Estate, Technology, Business
  • Be the first to comment

  • Be the first to like this

New Sensors Effluent monitoring - 19 July 2012

  1. 1. biology for sensors and sensors for biology Darren Reynolds Aquatic Organic Fluorescence from phenomenon to applicationsInstitute of Bio-Sensing Technology
  2. 2. 17th and 18th Centuries – intellectualmovement - ‘Enlightenment’ the ‘Ageof Reason’.Newtonian science exerted its greatestimpact on the world biology for sensors and sensors for biology
  3. 3. Maxwell de Broglie BornThompson Wein RutherfordFaraday Hertz SchrödingerStokes Einstein PauliBohr Planck LewisBecquerel Crookes Heisenberg biology for sensors and sensors for biology
  4. 4. Defined as the emission of light by asubstance, where the emitted lightcannot be attributed to incandescence,i.e. thermal radiation. biology for sensors and sensors for biology
  5. 5. Sir G. G. Stokes (1852) biology for sensors and sensors for biology
  6. 6. biology for sensors and sensors for biology
  7. 7. Observed the fluorescence properties ofhumic and fulvic substances and organicmatter in natural waters........... ‘Gelbstoff’Humic, fulvic, DOC, DOM, CDOM(Vodacek, Mopper, Blough, Coble) biology for sensors and sensors for biology
  8. 8. we have and are experiencing atechnological revolution largely drivenby breathtaking advances in; Applied electro optics Improvements in data processing and data handling.... biology for sensors and sensors for biology
  9. 9. Optical Space www.turnerdesigns.combiology for sensors and sensors for biology
  10. 10. Optical Space Wastewater fluorescencebiology for sensors and sensors for biology
  11. 11. Optical Space Wastewater fluorescencebiology for sensors and sensors for biology
  12. 12. Optical Space 600.00 1000 962.00 550.00 886.00 ) 800 (n m 810.00 500.00 734.01Intensity (a.u.) a v e l e n g th 450.00 658.01 600 582.01 400.00 506.01 400 430.01 350.00 354.02 W 278.02 300.00 200 202.02 250.00 126.02 5 0 .0 2 0 200.00 300 400 500 600 7005 . 9 7 -2 3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 Wavelength5 0(nm) 5 0 0 .0 0 5 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0 W a v e l e n g th (n m ) biology for sensors and sensors for biology
  13. 13. Optical Space a) d) b) e) c) f)biology for sensors and sensors for biology
  14. 14. Singlet Excited States Triplet Excited State Internal Vibrational Conversion Relaxation S2 Intersyste m Crossing S1 T1Energy Internal Absorption Fluorescence and Phosphorescence External Conversion S0 Ground state λ2 λ1 λ3 λ4 biology for sensors and sensors for biology
  15. 15. biology for sensors and sensors for biology
  16. 16. biology for sensors and sensors for biology
  17. 17. 600.00 1000 962.00 550.00 886.00) 800(n m 810.00 500.00 734.01a v e l e n g t h 450.00 658.01 600 Chlorophyll 582.01 400.00 506.01 400 430.01 350.00 354.02W 278.02 300.00 200 202.02 250.00 126.02 5 0 .0 2 0 200.00 300 400 500 600 7005 . 9 7 -2 3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0Wavelength5 0(nm) 5 0 0 .0 0 5 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0 biology for sensors n g t h sensors for biology W a v e l e and ( n m )
  18. 18. Whitening Agents 600.00 1000 962.00 550.00 886.00) 800( n m 810.00 500.00 734.01a v e l e n g t h 450.00 658.01 600 Chlorophyll 5 8 2 . 0 1 400.00 506.01 400 430.01 350.00 354.02W 278.02 300.00 200 202.02 250.00 126.02 5 0 .0 2 0 200.00 300 400 500 600 7005 . 9 7 -2 3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 Wavelength5 0(nm) 5 0 0 .0 0 5 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0 biology for sensorseandhsensors for biology W a v e l n g t (n m )
  19. 19. Fluorescent Dyes 600.00 1000 962.00 550.00 886.00) 800( n m 810.00 500.00 734.01a v e l e n g t h 450.00 658.01 600 Chlorophyll 5 8 2 . 0 1 400.00 506.01 400 430.01 350.00 354.02W 278.02 300.00 200 202.02 250.00 126.02 5 0 .0 2 0 200.00 300 400 500 600 7005 . 9 7 -2 3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 Wavelength5 0(nm) 5 0 0 .0 0 5 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0 biology for sensorseandhsensors for biology W a v e l n g t (n m )
  20. 20. Chlorophyll fluorescence 600.00 1000 962.00 550.00 886.00) 800( n m 810.00 500.00 734.01a v e l e n g t h 450.00 658.01 600 Chlorophyll 5 8 2 . 0 1 400.00 506.01 400 430.01 350.00 354.02W 278.02 300.00 200 202.02 250.00 126.02 5 0 .0 2 0 200.00 300 400 500 600 7005 . 9 7 -2 3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 Wavelength5 0(nm) 5 0 0 .0 0 5 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0 biology for sensorseandhsensors for biology W a v e l n g t (n m )
  21. 21. Humic/Fulvic Material 600.00 1000 962.00 550.00 886.00) 800( n m 810.00 500.00 734.01a v e l e n g t h 450.00 658.01 600 Chlorophyll 5 8 2 . 0 1 400.00 506.01 400 430.01 350.00 354.02W 278.02 300.00 200 202.02 250.00 126.02 5 0 .0 2 0 200.00 300 400 500 600 7005 . 9 7 -2 3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 Wavelength5 0(nm) 5 0 0 .0 0 5 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0 biology for sensorseandhsensors for biology W a v e l n g t (n m )
  22. 22. Microbial Processes 600.00 1000 962.00 550.00 886.00) 800( n m 810.00 500.00 734.01a v e l e n g t h 450.00 658.01 600 Chlorophyll 5 8 2 . 0 1 400.00 506.01 400 430.01 350.00 354.02W 278.02 300.00 200 202.02 250.00 126.02 5 0 .0 2 0 200.00 300 400 500 600 7005 . 9 7 -2 3 0 0 .0 0 3 5 0 .0 0 4 0 0 .0 0 4 5 0 .0 0 Wavelength5 0(nm) 5 0 0 .0 0 5 .0 0 6 0 0 .0 0 6 5 0 .0 0 7 0 0 .0 0 biology for sensorseandhsensors for biology W a v e l n g t (n m )
  23. 23. biology for sensors and sensors for biology
  24. 24. Autochthonous material is created in-situthrough microbial activity – a reflection of thephys/chem/biol processesThis provides a recycling mechanism forallochthonous DOM (dissolved organic carbonfed into the hydrological system from outside). biology for sensors and sensors for biology
  25. 25. Bacterial origin. Shelley et al., (1980), Dalterio et al. (1986)Determann et al., (1998) Cammacket al., (2004) and Elliott et al., (2006) biology for sensors and sensors for biology
  26. 26. Papers Aquatic Fluorescence Research Wastewater FluorescenceNumber Published Marine ‘optical map’ Fresh/waste ‘optical map’ Rapid Technological (Coble, 1993, Mar.Sci.) (Baker, 2001, ES&T) improvements Laboratory Field biology for sensors and sensors for biology
  27. 27. – Water recycling/nano filtration– Drinking water treatment processes - chlorination– Urban watersheds quality monitoring– Catchment water quality monitoring– Wastewater quality monitoring biology for sensors and sensors for biology
  28. 28. Real-time monitoring of water andwastewater quality using a fluorescencetechniqueOptical Spectroscopy in the AquaticEnvironmentElsholt Works, Yorkshire Water (May,1998) biology for sensors and sensors for biology
  29. 29. biology for sensors and sensors for biology
  30. 30. The characterisation of sewage usingfluorescenceEffluent and Sewage Network ManagementInst. Mech. Engineers (February 2000) biology for sensors and sensors for biology
  31. 31. biology for sensors and sensors for biology
  32. 32. Field based fluorescence devices forurban/fresh/drinking/waste watersystems have been limited;– Low knowledge base– Technological challenges– Lack of appropriate field trails biology for sensors and sensors for biology
  33. 33. Real-time monitoring of river water qualityusing in-line continuous acquisition offluorescence excitation and emissionmatrices.Future Water Sensing TechnologiesWarrington, (February, 2010) biology for sensors and sensors for biology
  34. 34. biology for sensors and sensors for biology
  35. 35. Samples Correlation References (peak/parameter/Pearsons r unless stated)Raw settled/treated sewage from 3 different treatment works T1 BOD5 0.960(n=129) 0.970 Reynolds & Ahmad (1997) 0.960Raw settled/treated sewage (n=25) T1–T2 BOD5 0.980 Ahmad & Reynolds (1999)Synthetic sewage treated via a rotating bio-disc contactor (n =45) FTotal BOD5 0.890FTotal = Total fluorescence intensity T1 COD 0.920 Reynolds (2002) FTotal–T1 TOC 0.910Settled and treated sewage samples over a 3 month period (n=56) FTotal BOD5 0.980FTotal = Total fluorescence intensity T1 COD 0.980 FTotal–T1 TOC 0.980 COD-BOD 0.840 BOD5 0.790 COD 0.820 TOC 0.800 BOD5 0.930 COD 0.940 TOC 0.930 COD-BOD 0.710Filtered raw sewage T1 COD 0.420 TOC 0.410 Vasel & Praet (2002) Nk 0.690 NH4-N 0.650 COD 0.560a TOC 0.530a Nk 0.760a NH4-N 0.840aTreated effluent samples (over a 3 month period) T1 COD 0.900 Lee and Ahn (2004)Wastewater samples (96 in total) using CODDissolved values T1 CODDissolved. 0.370 Wu et al., (2006) COD 0.510Sewage effluents (n=16) C1 DOC 0.140 Cumberland & Baker (2007)Wastewater effluents (223 samples - sewage, trade and pollution T1 BOD5 0.906bincidents) T2 TOC 0.876b Hudson et al., (2008) C2 BOD5 0.848b A TOC 0.802b BOD5 0.771b TOC 0.870b BOD5 0.720b TOC 0.808b biology for sensors and sensors for biology
  36. 36. a) d) VII III b) e) VI II c) f) V IIV biology for sensors and sensors for biology
  37. 37. A concerted effort to tackle theapproaching data Tsunami is necessaryApplication driven technology needs to bedeveloped, tested and evaluated in thefield biology for sensors and sensors for biology
  38. 38. Fluoro-sensor Development Tryptophan-like fluorescence Laboratory assessment Field deployment biology for sensors and sensors for biology
  39. 39. Preliminary Field Trials biology for sensors and sensors for biology
  40. 40. • Aquatic fluorescence is not new• Fluorescence sensing has history• Technology Readiness Level is high• Clear Identified Applications biology for sensors and sensors for biology
  41. 41. • Application-led field studies/trials – Sensor performance – Generation of data sets for evaluation – Development of appropriate data management tools (application driven) biology for sensors and sensors for biology
  42. 42. Hudson, N., Baker, A., and Reynolds,D. (2007). Fluorescence analysis ofdissolved organic matter in natural,waste and polluted waters – a review.River Research Applications, 23, 631-649. biology for sensors and sensors for biology
  43. 43. Henderson, R.K. et al. (2009).Fluorescence as a potentialmonitoring tool for recycled watersystems: A review. Water Research,43, 863-881. biology for sensors and sensors for biology
  44. 44. Paula G. Coble, Andy Baker, JamieLead, Robert M. Spencer, Darren M.Reynolds.2013 Cambridge University Press biology for sensors and sensors for biology
  45. 45. John Attridge Chelsea Technologies Group, UK. Robin Thorn & Gareth Robinson Centre for Research in Biosciences, UWE, UK. Elfrida CarsteaNational Institute of R&D for Optoelectronics, Romania. Andy Baker Water Research Centre, UNSW, Australia. biology for sensors and sensors for biology
  46. 46. darren.reynolds@uwe.ac.uk http://www.biosensingtech.co.uk/ biology for sensors and sensors for biology

×